Monday, Sep 20th

Last updateTue, 31 Aug 2021 8am

Buradasınız: Home Makale

Sanayide PDM’nin Tarihsel Gelişimi, Günümüz PDM/PLM Birlikteliğinin Oluşması ve Fonksiyonları

Özet

PDM sistemlerinin kullanımı başlangıçta teknik departmanlarla, bilgisayar destekli tasarım süreçlerinde oluşturulan dosyaların depolanması ve bunlara erişim desteği ile sınırlıydı. Ana amacı, tasarım mühendislerinin zamandan tasarruf etmesine ve ürünleri üretim aşamasına daha hızlı ulaştırmasına yardımcı olmaktı. PDM'nin ilk aşamalarında, çizimler için bir depolama yeri olarak tasarım mühendislerine hizmet etti, çizimleri bulmayı ve çizimlerde sonraki değişikliklerin işlenmesini kolaylaştırdı. PDM sistemi daha sonra yaşam döngüleri boyunca ürünler hakkındaki bilgilerin yönetimi için bir araç haline geldi. PDM (Ürün Veri Yönetimi), PLM (Ürün Yaşam Döngüsü Yönetimi) olarak yeniden adlandırıldı.

1. Giriş

CAD yazılımları 1960’lı yıllardan beri varlığını sürdüren yazılımlardır. CAD yazılımları 1960’lı yıllarda bilgisayarın çok pahalı olması sebebiyle çok az firma tarafından kullanılmaktaydı. 1980’lerde bilgisayarların yaygınlaşması ile kullanımı arttı. Şirketler verilerini depolamak ve yönetmek için ilk adımı bu zamanlarda atmışlardır. EDB ( Engineering Data Base) ve EDM (Engineering Data Management) verileri yönetmek için kurulan ilk sistemlerdir daha sonra yerini PDM’e (Product Data Management) bırakmıştır.

Kalıp İçi Etiketleme Teknolojileri ve Ambalaj Endüstrisindeki Uygulamaları

Özet 

Ambalaj, içerisinde yer alan ürünü koruyan, temiz kalmasını sağlayan, taşınmasını kolaylaştıran ve aynı zamanda ürünün tanıtımını yapan değerli bir malzemedir. Etiketleme ve ambalaj şekillendirmenin birlikte gerçekleştiği kalıp içi etiketleme sistemi günümüzde plastik ambalaj sanayii tarafından oldukça tercih edilmektedir. Polimer esaslı kalıp içi etiketler, kâğıt esaslı etiketlere göre yüksek ısı, donma, su ve nem gibi ortam koşullarına karşı dayanıklı olduğundan, ambalaj kullanıldığı müddetçe varlığını korumaktadır. Kaliteli ve hızlı ambalaj üretimini sağlayan bu sistemle ambalajın tüm yüzey alanı dekorlanabilmektedir. Bu çalışmada kalıp içi etiketleme tekniği, sistemde tercih edilen mürekkepler, kullanılan baskı altı malzemesi incelenmiş ve ambalaj sanayinde uygulama örneklerine yer verilmiştir. Dayanıklı tüketim malları ve gıda ambalajlarında büyük oranda (% 85-90) kullanılan bu teknolojinin geri dönüşümde sağladığı kolaylıklar ve ambalajın cazibesine katkısı dikkate alındığında gelişime açık olduğu bilinmektedir. 

Anahtar Kelimeler: Kalıp içi etiketleme, plastik ambalaj, ambalaj

1. Ambalaj Kavramı

Ambalaj, bir ürünü koruyan ve birçok farklı malzemeden yapılan taşıyıcıları, bu taşıyıcıların bir arada konulduğu kutuları tek birim haline getiren daha büyük paket, kutu ya da sandıkları kapsayan terimdir. Bir ambalaj ürünün ömrünü uzatır, taşıma maliyetini düşürür ve en önemlisi, grafik ve yapısal tasarım nitelikleriyle ürünü satmaya çalışır. Bir ambalajda malzemenin doğru seçimi, ürünün etkili bir biçimde korunması, taşınması ve tüketicinin ürüne yönelik beklentilerini karşılaması açısından en önemli faktördür. Bugünkü çağdaş ambalajlama anlayışıyla birebir örtüşmese de ambalaj MÖ 3000 yıllarından bu yana çeşitli milletler tarafından kullanılmaktadır. 17.yy’da kâğıt torbalar, 19.yy’da teneke ve oluklu mukavva kutular, süt vb. sıvı içecekler için kaliteli cam şişeler ambalaj sektöründe yer bulmuştur [1-2].

Sanayide Dijitalizasyon

Özet

Gelişen tüm teknolojik çalışmalar ile ortaya çıkan dijitalizasyon kavramı, tüm dünyayı etkisine almış durumdadır. Eğitimden sanayiye, hizmetten sağlık sektörüne kadar tüm yaşam alanlarımıza etki eden bu dönüşüm, yaşamımıza yeni kurallar getirmiştir. Yaşam şeklimizde, kişiler ile kurduğumuz iletişim yollarımızda, seyahat etme seçeneklerimizde bu gelişimin yansımalarını yaşıyoruz. Dünya, gelişen bu sistem ile oyuna yeni kurallar getirmektedir. Çağın getirdiği, müşteri taleplerinin daha hızlı karşılandığı, sınırların kaldırıldığı kurallara uyabilen işletmeler, bir adım öne geçebilmektedir. Bu çalışmada, dijital dönüşüm kavramları ve bu entegrasyonun işletmelere sağladığı katkılar ele alınmıştır.

Anahtar Kelimeler: Dijitalizasyon, dijital dönüşüm, ürün yönetimi

Sentetik Biyopolimer Temelli Hidrojellerin Medikal Alanda Kullanımı

Özet

Hidrojeller yüksek su içeriği sebebiyle yumuşak bir dokuya sahip olup, çevre dokular ile sürtünmesi azdır. Aynı zamanda mukoza yüzeyi ve dokularla düşük miktarda yapışma gösterirler. Yapılarında suyu tutabilme özellikleri nedeniyle vücut sıvılarının atılmasında kullanılmaktadır. Hidrojeller, tıbbi uygulama açısından gösterdiği bütün bu üstün özellikleri sayesinde genel olarak, kontakt lenslerde, yapay organ yapımında, doku mühendisliğinde yapı iskelesi olarak, kemik dokusu mühendisliğinde kemik onarımı ve rejenerasyonununda, yumuşak doku protezlerinde, pelvik ve abdominal cerrahide yapışıklıkları önlemek için, pulmoner cerrahide hava deliklerini kapatmak için, enzim tutuklama sistemlerinde, kozmetik sektöründe, kemik hastalıkları tedavisinde, sentetik kıkırdaklarda, kardiyovasküler ve ortopedik implantlarda, intravasküler ve idrar yolu kateterlerinde, yanık yaralarında ve yara örtülerinde, kontrollü ilaç salım sistemleri gibi birçok uygulama alanında kullanılmaktadır. Bu çalışmada bu uygulama alanlarında kullanılan hidrojeller ve bu hidrojellerde kullanılan sentetik biyopolimerler irdelenmiştir. 

Anahtar Kelimeler: Hidrojel, biyomedikal, biyopolimerler, sentetik biyopolimerler

Hidrojel Temelli Yara Örtülerinde Kullanılan Doğal Biyopolimerler

Özet

Yaraların onarımı, insan yaşamı boyunca meydana gelen en karmaşık biyolojik süreçlerden biridir. Yara iyileşmesi, yaralanmayı takiben dokuyu yeniden yapılandıran hücreler, hücre dışı matris ve büyüme faktörleri arasındaki çoklu etkileşimleri içeren dinamik bir süreçtir. Kazalar, yanıklar, travmalar, kronik yaralar ve hastalıkların neden olduğu çeşitli cilt yaralanmaları önemli sağlık sorunları oluşturabilir. Bu amaçla, cilt lezyonlarını ve topikal yaraları tedavi etmek ve onarmak için uygun ve güvenli materyaller için artan bir talep vardır.

Yara örtüleri, yüksek su emme kapasitesine sahip, yara yüzeyinde nemli ortam sağlayan, gaz alışverişine izin veren, toksik olmayan, iyileşen dokunun yerini alması için canlı vücudunda yaralanan dokuyla benzeyen (biyouyumlu), yaradan kolayca çıkartılabilen, canlı vücudundaki dokuların işlevlerini yerine getirmek veya desteklemek için üretilen, sentetik veya doğal kaynaklı malzemelerden üretilmelidirler. Yara örtüleri epitelizasyon ve yarada hücre çoğalmasını sağlarken yara izi oluşmasının riskini azaltmak için de nemli bir ortam sağlamalıdır. Gazlı bez gibi geleneksel yara örtüleri, yara bölgesine güçlü yapışmalarından dolayı pansuman değişiklikleri sırasında ağrıya ve daha fazla travmaya neden olurlarken hidrojel bazlı pansumanlar, soğutma etkisi sağlama ve dokuya düşük yapışma özellikleriyle ağrıyı azaltmaktadır. Hidrojellerin yaklaşık olarak %90’ı su ve %10’u doğal ya da sentetik polimerlerden oluşmaktadır. Bu yüksek su kapasitesi, hidrojelleri kuru yaraları iyileştirmek için uygun hale getirmektedir. Hidrojeller gözenekli yapıları sebebiyle geçirgen olup, CO2, O2 ve su buharının sürekli değişimini sağlamaktadır. Ayrıca hidrojellerin polimerik ağ yapıları, vücuttaki hücredışı ortam ile benzemektedir. Bu özellikler hidrojelleri yara örtüsü amacıyla kullanıma uygun hale getirmiştir.   

Medikal uygulama alanında kullanılan hidrojeller, kollajen ve kitosan gibi doğal biyopolimerlerden sentezlenebileceği gibi, sentetik biyopolimerlerden de hazırlanabilmektedir. Doğal veya sentetik polimerlerle, rejeneratif tıp, ilaç dağıtımı ve doku yapıştırıcıları gibi farklı biyomedikal uygulamalara yönelik çeşitli çapraz bağlama kimyasına dayalı çok sayıda hidrojel geliştirilmiş olup özellikle biyomedikal uygulamalar için, doğal hücre dışı matrisin özelliklerine benzeyecek şekilde tasarlanmaktadır. Bu çalışmada, hidrojel temelli yara örtülerinde kullanılan bazı doğal biyopolimerlerin özellikleri ve etkinliklerinden bahsedilmiştir.

Anahtar Kelimeler: Hidrojel, yara örtüsü,  doğal biyopolimerler

1.Giriş

Vücudun en dış organı olan deri, yanık yaraları ve morluklar gibi travmalara karşı son derece savunmasızdır. Bu hasarlar, insanları uzun süre rahatsız eden çeşitli akut ve kronik yaralar oluşturan cilt veya derin doku kusurlarına neden olabilir. Bununla birlikte, fibroz, hipertrofik skarlar veya ülserler gibi patolojik iyileşme süreçleri büyük sakatlıklara yol açabilirler [1]. Kronik yaralar genellikle sık pansuman değişikliği nedeniyle fiziksel kısıtlamalara yol açtığından hastanede kalış süresini de arttırırken aynı zamanda hastaların yaşam kalitelerini de azaltır [2]. Dünya çapında yaklaşık 20 milyon hasta kronik yaralardan şikâyetçidir [3]. Bu nedenle, yaraların iyileşmesine yüksek etkinlik ile nasıl yardımcı olunacağı konusunda yara örtüleri, yara onarımını desteklemek için sıklıkla kullanılan araçlardır [4]. 

Yara iyileşmesi, cildin düzenli bir şekilde yenilenme kapasitesini gösterir [1]. Yara iyileşmesi dinamik bir süreçtir ve bir yara örtüsünün performans gereksinimleri iyileşme ilerledikçe değişebilir. Ayrıca, sıcak, nemli bir ortamın hızlı iyileşmeyi teşvik ettiği yaygın olarak kabul edilmektedir ve çoğu modern yara bakım ürünü bu koşulları sağlamak için tasarlanmıştır. Örneğin, yanık yaralanmalarında sıvı dengesi çok önemlidir çünkü yanık yaralanması, vücuttan eksüdasyon ve buharlaşma ile aşırı su kaybı vücut ısısında düşüşe ve metabolik hızda artışa neden olabilir. Bunun yanı sıra, pansumanın uygulama ve çıkarma kolaylığı ve uygun yapışma gibi bazı özelliklerinin de olması gerekir, böylece bakterilerin çoğalması için sıvı dolu cepler oluşturmaları için herhangi bir alanları kalmaz [5]. Yara örtüleri, yarayı sadece dış rahatsızlıklardan korumakla kalmayıp aynı zamanda yara kapanması için ideal bir ortam sağladığından, yara iyileşmesi için belirgin bir şekilde önemlidir. Bununla birlikte, çoğu yara sargısının onarım sürecine yardımcı olmak için ek aktif bileşenlere ihtiyacı vardır [4]. Yara örtüleri, yüksek su emme kapasitesine sahip, gaz alışverişine izin veren, toksik olmayan, iyileşen dokunun yerini alması için canlı vücudunda yaralanan dokuyla benzeyen (biyouyumlu), yaradan kolayca çıkartılabilen, canlı vücudundaki dokuların işlevlerini yerine getirmek veya desteklemek için üretilen, sentetik veya doğal kaynaklı malzemelerden üretilmelidirler [6, 7]. Yara örtüleri epitelizasyon ve yarada hücre çoğalmasını sağlarken yara izi oluşmasının riskini azaltmak için de nemli bir ortam sağlamalıdır. Çok sayıda yara pansuman malzemesi mevcuttur ve ayrıca konu ile ilgili çok sayıda araştırma devam etmektedir. Gazlı bez gibi geleneksel yara örtüleri, yara bölgesine güçlü yapışmalarından dolayı pansuman değişiklikleri sırasında ağrıya ve daha fazla travmaya neden olurlarken hidrojel temelli pansumanlar, soğutma etkisi sağlama ve dokuya düşük yapışma özellikleriyle ağrıyı azaltmaktadır [2].  Hidrojellerin yaklaşık olarak %90’ı su ve %10’u doğal ya da sentetik biyopolimerlerden oluşmaktadır. Bu yüksek su kapasitesi, hidrojelleri kuru yaraları iyileştirmek için uygun hale getirmektedir. Hidrojeller gözenekli yapıları sebebiyle geçirgen olup, CO2, O2 ve su buharının sürekli değişimini sağlamaktadır [8]. Ayrıca hidrojellerin polimerik ağ yapıları, vücuttaki hücredışı ortam ile benzemektedir. Bu özellikler hidrojelleri yara örtüsü amacıyla kullanıma uygun hale getirmiştir [2].   

Biyomedikal uygulama alanında kullanılan hidrojeller, kollajen, kitosan, jelatin, hiyolüronik asit, aljinat, selüloz gibi doğal biyopolimerlerden sentezlenebilmektedir. Doğal  biyopolimerlere, rejeneratif tıp, ilaç dağıtımı ve doku yapıştırıcıları gibi farklı biyomedikal uygulamalara yönelik çeşitli çapraz bağlama kimyasına dayalı çok sayıda hidrojel geliştirilmiş olup özellikle biyomedikal uygulamalar için, doğal hücre dışı matrisin özelliklerine benzeyecek şekilde tasarlanmaktadır.

Hidrojellerin Yara Örtüsü Uygulama Alanında Kullanımı ve Çapraz Bağlanma Mekanizması

Hidrojeller, nemli yara iyileşmesinin özelliklerini iyi sıvı emilimi ile birleştirir ve iyileşmenin izlenmesine izin vermek için de şeffaf olur [5]. Biyolojik uygulamalarda yaygın olarak kullanılan, yapısındaki fonksiyonel gruplara bağlı olarak uygun bir çözücü ortamında ağırlıklarının 1000 katına kadar şişebilen, çapraz bağlı üç boyutlu ağ yapısına sahip [9], canlı sistemlerindeki yaralanmaları iyileştirmek için önemli rol oynayan [10] hidrojellerin, antibakteriyel ve toksik olmama gibi özellikleri vardır [11]. Hidrojellerin kolay şekil almaları ve yara yüzeyinden kolayca temizlenmeleri büyük bir avantaj sağlamaktadır [7].

Hidrojeller elastik yaprak, amorf jel ya da film olarak uygulanmakta olup, yaprak formundakiler, ideal yara örtüsü özelliklerinin çoğuna sahiptirler [7].  Yaprak veya jel formda kullanılabilen [6] hidrojellerin, protein ve hücre gibi biyolojik bileşenleri absorbe etme eğilimi zayıftır [7]. Yapısına katılan bazı moleküller sayesinde sıcaklık, pH, iyonik kuvvet, elektrik ve manyetik alana duyarlı akıllı hidrojeller sentezlenebilir [9]. Hidrojellerin, biyotıp ve doku mühendisliği alanında, yapay organ yapımında, bazı fizyolojik vücut sıvılarının taşınmasında, denetimli salım sistemlerinde, ilaç taşıyıcı sistemlerinin hazırlanmasında, bazı istenmeyen türlerin çeşitli ortamlardan uzaklaştırılmasında, tarımsal alanda gübrelerin ve tarım ilaçlarının çevreye denetimli salımlarının sağlanmasında kullanıldığı bilinmektedir [12-14]. 

Yara örtüsü olarak kullanılan hidrojeller kuru, nekrotik, yüzeysel, eksudasız ve infekte olmayan yaralarda kullanılırken ikincil örtü kullanılmalı veya sık değiştirilmelidirler [15]. Hidrojel temelli yara örtüleri biyolojik doku ile etkileşime girmeden metabolitlere karşı geçirgendir ve herhangi bir tahrişe neden olmaz [16]. Hidrojel, yapısından dolayı cilde oksijen giriş çıkışını sağlayabilmekte  [7, 9] ve nem geçirgenliği özelliği de ağır yaralardaki sıvı birikimini önlemektedir [17]. Uzun veya küresel gözeneklere sahip makro gözenekli hidrojeller, nano gözenekli süngerlerde, antibakteriyel ve yara iyileştirici ilaçlarda, ince filmler gibi çok sayıda biyopolimer bazlı yara iyileştirici malzemelerde kullanılabilir [18].  Gözenekliliğin rastgele veya düzenli dağılması çapraz bağlanma derecesinin bir fonksiyonu olup, çapraz bağlanma süresi arttıkça düzenlilik artmaktadır [19].  

Hidrojeller fiziksel ve kimyasal yöntemler ile hazırlanabilirler. Her iki yöntemde de monomerleri çapraz bağlayarak ağ yapısı elde edilir. Kimyasal yöntemde kovalent bağlar etkiliyken, fiziksel yöntemle hazırlamada elektrostatik güçler ve hidrojen bağları etkilidir. Fiziksel bağlı jeller ısıtma yoluyla polimer çözeltisi haline geri dönebilir fakat kimyasal yöntemle üretilen hidrojeller kovalent bağların kuvveti sebebiyle daha kalıcıdır [20]. Bu yüzden kullanılan çapraz bağlayıcılar da hidrojellerin performansında etkilidirler. Hidrojelin biyouyumluluk ve biyobozunurluk performansı, kullanılan malzemelere bağlıdır [21].

Yara Örtüsü Uygulamasında Kullanılan Doğal Biyopolimerler

Biyomalzemeler, biyolojik sistemleri geliştirmek, tedavi etmek ya da herhangi bir doku, organ veya vücut fonksiyonunun yerine geçmek için ara yüzey oluşturan malzemeledir. Biyomalzemeler içinde biyopolimerler önemli bir rol oynar. Biyopolimerler bozunma özelliklerine göre biyobozunur ve biyobozunur olmayan biyopolimerler olarak ikiye ayrılır [22]. Örneğin, kemik onarım, kemik sabitleme ya da dişçilik malzemerinin insan vücudunda bozunmadan uzun süre kalması beklenir. Doku mühendisliği, rejeneratif tıp, gen terapisi ve kontollü ilaç salınım sektörlerinde kullanılan biyomalzemelerin biyobozunur olması istenmektedir. In vivo ortamların çeşitliliği ve karmaşıklığı nedeniyle, in vivo uygulamaları için çeşitli spesifik özelliklere sahip biyopolimerlere ihtiyaç vardır [23].

Biyouyumlu hidrojeller ise, yara iyileşmesinde, ilaç salımında, çevre uygulamalarında (membran prosesleri), gıda kaplamalarında, gıda üretimi uygulamalarında olmak üzere pek çok alanda kullanılmaktadır [20]. 

Hidrojellerin geliştirilmesinde kullanılan doğal biyopolimerlerin kullanımı giderek önem kazanmıştır. Bu nedenle, polisakkaritler ve türevleri (örn., Aljinatlar, kitosan, heparin ve selüloz), proteoglikanlar ve proteinler (örn., Kolajen, jelatin, fibrin, keratin) gibi doğal polimerler, yara yönetimi ve tedavisinde yaygın olarak kullanılmaktadır. Genellikle insan vücudu tarafından tanınan makromoleküllere uygun biyolojik bozunabilirlik, biyouyumluluk ve benzerlik gösterirler. Doğal biyopolimerlerin çeşitli alternatifleri arasında, selüloz ve türevleri, yara sargısı, ilaç dağıtımı ve doku mühendisliği dahil olmak üzere birçok alanda hidrojellerin ve kompozitlerin üretimi için doğal bir kaynak olarak geniş çapta kullanılmıştır. Genellikle biyouyumluluk, biyolojik olarak parçalanabilirlik, suda çözünürlük, bolluk ve düşük maliyet ve çevre dostu olmanın faydalarını sunarlar [24].

Son yıllarda polisakkaritler canlı organizmalardan kolay elde edilmelerinden dolayı ilgi çekmektedir [25]. Doğal polimerlerden sentezlenen hidrojellerin, sentetik hidrojellere nispeten biyouyumluluk ve biyobozunurluk gibi önemli avantajlarının yanı sıra  doğal polimer bazlı hidrojeller  genelde zayıf mekanik özelliklere sahiptirler [26].

Biyolojik ortamlarda sıkça tercih edilen hidrojellerin ve hidrojel yapımında kullanılan bazı doğal biyopolimerlerin özellikleri şöyledir.

Doğal polimerlerden kitin, selülozdan sonra yeryüzündeki ikinci en yaygın doğal polisakkarittir [27]. Kitan olarak adlandırılan tam asetillenmiş formdaki kitin doğada mevcuttur. Her yıl yaklaşık yüz milyar ton kitin farklı kaynaklardan elde edilmektedir [28]. Böceklerin, kabukluların ve mantarların dış iskeletlerinden elde edilen, doğal, çözünmeyen, toksik olmayan, antijenik olmayan, antimikrobiyal aktiviteye ve iyi adsorpsiyon özelliklerine sahip, biyo-uyumlu ve biyo-bozunur özelliklere sahiptir [29, 30]. Kitin, zayıf çözünürlüğü nedeniyle sulu çözelti ve organik çözücüler içinde bulunmaz [10]. Organik asitler, antibiyotikler ve enzimler gibi mayalama yan ürünlerinden de elde edilebilir. Yakın dönemde süngerlerin iskelet oluşumları içinde tespit edilmiş ve deniz süngerlerinden izole edilebildiği bildirilmiş olan kitin [27], kemik dokusu mühendisliği ve biyomühendislik gibi uygulamalarda en çok çalışılan malzemelerden biridir [30, 31].

Kitinin birçok türevi bulunmakla beraber, bunlar arasında en önemlisi, kitinin deasetilasyonu sonucu üretilen kitosandır [32]. Kitosanın geçmişi 19. yüzyıla kadar uzanmaktadır [10]. Katyonik bir polimer olan kitosan lineer, yarı kristalin ve kısmen N-deasetillenmiş polimerik (1 → 4) bağlı 2-amino-2-deoksi-β-D-glukopiranoz birimlerinden oluşan bir kitin türevi olup, 120°C'de NaOH ile işlenmesi ile elde edilen bir polisakkarittir [28, 33, 34]. Kitinden elde edilen bir malzemenin kitosan olabilmesi için deasetilasyon sonucunda en az % 60 miktarında D-glukozamin içermesi gerekmektedir [35]. Deasetilasyon derecesi, kitinin yapısında bulunan asetil grupların uzaklaştırılma derecesi olarak tanımlanmaktadır. Deasetilasyonun derecesine bağlı olarak, çoğunlukla birincil alifatik amino grupları biçiminde olan %5 - 8 (w/v) arasında azot içerir.  Deasetilasyon derecesinin farklılığı başta çözünürlük olmak üzere molekül ağırlığını ve viskoziteyi etkilemektedir. Kitosanın kitine göre avantajlarının en önemlisi çözünürlüktür. Kitin çok miktarda molekül içi ve moleküller arası hidrojen bağlarına sahip olan yarı kristalin bir polimerdir. Bu sebeple derişik asit çözeltilerinde ve bazı toksik çözücülerde çözünmektedir. Kitosan ise katyonik bir polimer olmasından dolayı pH 6’dan düşük çözeltilerde kolaylıkla çözünmektedir [36]. Asidik ortamlarda kitosanın yapısında bulunan NH2 grubu –NH3+’a dönüşür, böylece ortamdaki anyonik gruplarla etkileşime girer. Bu sayede protonlanmış durumda olan kitosan katyonik polielektrolit davranış göstererek viskozitesi yüksek, zıt yüklü molekül ve yüzeylerle etkileşime giren bir polimer haline gelir [37]. Kitin üzerinde serbest amin grupları yoktur, ancak kitosandaki D-glukozamin yapıları seyreltik asitlerle protonlanarak çözünürlük kazanmaktadır. Bu amino gruplardan dolayı kitosan farklı malzemelerle kompleks oluşturabilir. Kitosan pozitif yüklenen tek doğal polisakkarittir ve üzerinde bulunan amino ve hidroksil grupları başka malzemelerle kovalent bağlar oluşturmasını sağlar. Kitinin deasetilasyon derecesi %0, kristalliği %100’dür. Kitosanın deasetilasyon derecesinin maksimum olduğu yerde kristalliği sıfıra yakındır. Kitosan çoğunlukla yara örtüsü, yapı iskeleti ya da antimikrobiyal uygulamalarda kullanılır [28]. İdeal bir yara örtüsünün özelliklerinin çoğuna sahip olduğu bilinen kitosan hidrojel yara örtüleri, yüksek su tutma özelliklerinden dolayı kurumuş olan yara yüzeyine uygulandıklarında yaranın iyileşmesi için gerekli su ihtiyacını karşılayabilmekte [7, 9] ve yaraya yapışmayan nemli yapısı sayesinde yaranın sıcaklığını ayarlayarak soğutucu bir etki sağlarken ağrıyı azaltma özelliğine de sahip olup [38] yara yatağından kolayca ayrılabilmektedir [6]. Kitosan, yara dokusu içinde hücre dışı bir glikozaminoglikan bileşeni olarak bütünleşen mükemmel bir muko yapışkan polimerdir [39]. Kitosan bazlı malzemeler; filmler, hidrojeller, lifler, tozlar ve mikro / nanopartiküller gibi çeşitli formlarda hazırlanabilir. Düşük toksisitesi, kan ve dokularla biyouyumluluğu nedeniyle ticari ve biyomedikal alanlarda kullanımında artış gözlenmektedir [40]. Kitosan hidrojelleri fiziksel olarak birleşme ya da kimyasal olarak çapraz bağlama gibi çeşitli yollarla sentezlenebilmektedir [41].  Fiziksel hidrojeller tersinir olup, zincir dolanmaları, Van der Waals kuvvetleri, hidrojen bağları, hidrofobik veya elektronlar aracılığıyla etkileşimler gibi fiziksel etkileşimlerle çapraz bağlıdırlar [9, 41].  Kararlı hidrojeller çapraz bağlayıcılar eklenerek ya da çapraz bağlayıcı eklemeden polimer zincirleri arasındaki direk etkileşim ile elde edilebilir Kovalent bağlı kitosan hidrojelleri tersinir olmayan kovalent bağlarla oluşturulan kimyasal hidrojelerdir [41].

Kitin ve kitosan 5-floro urasile bağlanarak tümörler için terapötik ajan olarak kullanılmaktadır [42]. Vücudun çeşitli bölgeleri için ilaç taşıyıcı olarak kullanılan oküler, oral ve nazal ilaç dağıtımında rol oynarlar [30]. Fiziksel özellikleri, kitinin deasetilasyon derecesine, moleküler ağırlığına, yapısındaki amino ve asetamido gruplarının dizisine ve ham maddenin saflığına bağlıdır [43, 44]. Isıya duyarlı kitosan jelatin hidrojelleri, glokom ve oküler hipertansiyonu kontrol etmek ve tedavi etmek için kullanılır [30]. Kitosanın fibroblast oluşumunu hızlandırdığı ve iyileşmeye bağlı erken faz reaksiyonlarını artırdığı düşünülmektedir [40]. İpek fibroin ile kitosan karışımı elektrospinning sürecini kolaylaştırır ve uygun biyouyumluluk sağlar [45]. Kitosan, mukozal zarın kapalı bağlantılarını açma özelliğine sahiptir ve güçlü moleküller arası hidrojen bağları nedeniyle yalnızca asidik çözelti içinde çözünebilir [46, 47]. Kitosanın, omurgalılarda ağırlıklı olarak lizozim ve bazı bakteriyel enzimler tarafından parçalandığı bilinmektedir [10]. Kitin ve kitosan bazlı hidrojeller, biyouyumlu, toksik olmama, yara küçülmesini ve iyileşmesini hızlandırma yeteneğinden dolayı yara örtüsü, yara sargısı, yara bölgesine ilaç uygulaması, doku mühendisliği ve ilaç dağıtım taşıyıcıları gibi sağlık alanındaki çeşitli uygulamalarda kullanılmaktadırlar [6, 48]. Kutlusoy v.d (2016) [35], yaptığı çalışmada kitosanın biyouyumluluğunun hazırlanış metoduna ve deasetilasyon miktarına bağlı olduğu belirtilmiştir. Deasetilasyon miktarı arttıkça biyouyumluluğun arttığı gözlenmiştir. Dolayısıyla kitosanın hücre uyumluluğunun kitine göre daha fazla olması bu sebeptendir. Islam ve ark. (2019) [49], yaptıkları çalışmalarında kitosanın deasetilasyon derecesinin artmasının biyobozunurluğunu azalttığını, seyreltik asitlerde çözünürlüğünü ve biyouyumluluğunu arttırdığını belirtmişlerdir. Düşük deasetilasyon derecesine sahip kitosanlar bozunmaya daha yatkın olup yüksek deasetilasyon derecelerindeki kitosanlar ise daha iyi çözündüklerinden kullanımları daha kolaydır [49]. 

Hidrojel yara sargılarının üretimi için kullanılan jelatin [38], oldukça düşük elastisite modülüne sahip olduğu için düşük mekanik iritasyona sebep olur. Ayrıca kanla, vücut sıvılarıyla veya dokularla temas halindeyken yüksek biyouyumluluk gösterirler [28, 50].  Jelatin, kolajenin termal, fiziksel veya kimyasal olarak bozunmasıyla elde edilen doğal, toksik olmayan ve biyobozunur bir polimerdir. Düşük mekanik kararlılığa sahiptir, dolayısıyla fiziksel ve kimyasal olarak kolay çapraz bağlanabilir. Jelatinin çapraz bağlanması sonucu mekanik kararlılığı artırılmış olur [50]. Jelatin, hayvan derisinden, kemiklerinden ve nadiren de balık yüzgeçlerinden termal denatürasyon ile elde edilen, biyoprotein içeren  [28], lifli, çözünmez kolajenin bir türevi olup kırılarak elde edilen bir biyo-polimerdir. Kolajen dizilerine ve çok sayıda motife sahiptir, bu nedenle hücre bağlanmasını destekler [51]. Bu polimer, kollajenin üçlü sarmal yapısının denatüre edilmesiyle elde edilir, 2 farklı işlemden türetilen iki tür jelatin vardır: asitlerle işlenen jelatin A (pH 1-3) ve alkalin çözeltilerle işlenen jelatin B, iskele yapımı için en çok tercih edilen tür A'dır [52]. Jelatinin hammaddesi olan kolajen hayvansal dokularda en fazla bulunan proteindir [53]. Jelatinin iyonik yük ve molekül büyüklük özellikleri, elde edildiği kolajenin yapısına göre değişmektedir  [51]. 28 tip kolajen bulunmaktadır. Bunlardan en yaygını Tip I kolajendir ve daha çok deri, kemik ve tendon gibi bağ dokuda bulunur. Tip II kolajen ise özellikle kıkırdak dokuda bulunmaktadır. Tip III kolajen yaşa bağlı olarak büyük değişiklik gösteren bir proteindir. Diğer kolajen tipleri ise çok küçük miktarlarda bulunur ve genellikle dokudan dokuya farklılık gösterir [53]. Jelatinin büyük oranda glisin, prolin, alanin ve hidroksiprolin aminoasitlerinden oluşan [54], kısmen sıralı bir şekilde birbirine bağlanmış 18 amino asit içerdiği  [51] ve bir çok doku mühendisliği uygulamalarında iskele malzemesi olarak kullanıldığı bilinmektedir [55]. Jelatinin yapısındaki pirolin oranı yüksek ise daha güçlü jel haline gelebilmektedir [28]. Dünya çapında üretilen jelatinin yaklaşık %70’i gıda sanayi, %15’i ilaç sanayi ve %10’u fotoğraf sanayisinde kullanılmaktadır [53]. Jelatin, yüzey aktif madde, tersinir sol-jel işleme gibi mükemmel kimyasal ve fiziksel özelliklere [31] ve kendi ağırlığının 5-10 katından fazla su emme özelliğine sahiptir [38], biyouyumludur ve düşük fiyatı ile yara örtücü malzeme olarak kullanılabilmektedir [28]. Jelatin matrisler, yüksek biyolojik özellikleri, gözenekliliği ve değişken mekanik özellikleri nedeniyle cilt dokusu mühendisliği başta olmak üzere birçok biyomedikal uygulamalarında [31], ayrıca cerrahi prosedürler sırasında kanamayı durdurmak için hemostat olarak kullanılabilmektedir [55]. Jelatin zincirleri solüsyon içerisinde matriks oluşturmakta, bu yapı sulu ortamlarda şişme kabiliyetinde olup hidrojel yapı sağlamaktadır. Günümüzde, geniş su absorbe etme özelliğinden dolayı doğal hidrojellerin tıp, ilaç, tarım ve biyo çözünür gıda ambalajı alanında önemi artmıştır [56]. Jelatinin terapötik amaçlar için birçok mükemmel özelliği olmasına rağmen, sulu ortamda hızlı çözünmesi ve bozunması, doku mühendisliği ve yapı iskeletlerinin üretimi için kullanımını sınırlamaktadır [57]. Jelatinin önemli bir dezavantajı, 37°C veya üzerindeki sıcaklıklarda koloidal bir çözelti olarak çözünmesi ve oda sıcaklığından daha düşük sıcaklıklarda da jelleşmesidir [58, 59].  Gıda endüstrisinde jelleşme ve kıvam artırıcı olması sebebiyle geniş bir kullanım alanına sahiptir. Jelatini diğer hidrokolloidlerden ayıran en önemli farklılıkları insan vücut sıcaklığının altındaki sıcaklıklarda geri dönüşlü olarak eriyebilmesi, hayvansal kaynaklı doğal protein yapısında olması ve GRAS statüde bir katkı maddesi olmasıdır [56]. Jelatin ayrıca bir vasküler doku rejenerasyonu tekniği olarak hücre bağlanmasını güçlendirmek için bir kaplama maddesi olarak kullanılmaktadır [52].

Aljinat, kahverengi alglerden elde edilir, β-D-mannuronik asit ve α-L-guluronik asit ünitelerinde oluşan negatif yüklü bir polisakkarittir. Kaynağına ve işleme yöntemine bağlı olarak, molekül ağırlığı 10-1000 kDa arasında değişmektedir. Biyouyumlu, mukoadheziv ve immünojenik olmayan bir polimerdir. Aljinat çözeltisi üzerine çok değerlikli katyonların eklenmesi, hızlı bir şekilde iyonotropik jel oluşturur [60]. Bazı aljinat sargıların (örneğin, Kaltostat), interlökin-6 gibi yüksek seviyelerde tümör nekroz faktörleri üretmek için insan monositlerinin uyarılmasıyla yara iyileşmesini artırabileceği belirtilmiştir. Sitokinlerin yara bölgesinde üretilmesi, yara iyileşmesi için avantajlı bir pro-enflamatuar uyarıcı ile sonuçlandığı ve bu pansumanların yüksek biyoaktivitesinin aljinatlarda endotoksin varlığına bağlı olduğu düşünülmektedir [5].

Hiyolüronik asit (HA) tekrarlayan D-glukuronik asit, D-N-asetil-glukozamin dimerik ünitelerden oluşan, sülfatlanmamış, dallanmamış, doğrusal bir glikozaminoglikandır. Her yerde bulunan, yüksek oranda hidratlanmış polianyon, serumda 100 kDa’dan sıvıda 8000 kDa’ya kadar değişen boyutlarda meydana gelir ve çoğu bağ dokusunun ekstrasellüler matriksine yayılır. Hyalüronik asit cildin ve dokuların iyi yağlanmasına, nemli kalmasına yardımcı olan bir maddedir. Aynı zamanda bir nemlendiricidir. Çevreden nem alan ve ciltte nemlenmeyi artıran bir cilt bakım bileşenleri kategorisidir [61, 62]. Hiyalüronik asit, ekstraselüler matriksin en önemli komponentlerinden biridir ve hidrofilik özelliği ile bilinir. Hiyalüronik asit makrofajlar tarafından sitokin üretimini ve dolayısıyla anjiogenezi uyarmakla görevli olup doğal yapısı gereği biyouygun ve biyolojik olarak parçalanır özelliktedir [7]. Bu nedenle de HA, doku mühendisliğinde ve rejeneratif tıpta yara örtüsü uygulamalarında yarar sağlayan yeni biyomalzemelerin oluşturulması için önemli bir yapı taşı olarak kabul edilen bir doğal polimerdir [61, 63]. Ying ve ark (2019) [4], kendiliğinden iyileşme aktivitesi gösterebilen yeni sargılar geliştirmek için, kolajen I ve hiyalüronik asitten oluşan enjekte edilebilir, vasküler hücrelerin büyümesi ve yara kapanması için hücre dışı matrisi taklit etmek üzere bir hidrojel, tasarlamışlardır. Bu hidrojel içinde kültürlenen insan mikrovasküler endotel hücreleri (HMEC) ve fibroblastlar, önemli proliferasyon davranışları göstermiş ve HMEC kültür hidrojelinde vasküler rejenerasyon olasılığına yol açan belirli bir düzeyde vasküler endotelyal büyüme faktörü gözlemlenmiştir. 

Ticari selüloz eterler arasında, karboksimetil selüloz (CMC), selüloz omurgası üzerinde çok sayıda karboksimetil grubuna sahip bir selüloz türevi olup en yaygın olarak kullanılan, suda çözünür, anyonik bir biyopolimerdir. Hidrofiliklik, biyo-yapışkanlık, pH duyarlılığı, toksik olmama ve jel oluşturma gibi karboksilat gruplarına dayanan bu özellikleri ile ilaç dağıtımında ve diğer biyomedikal araştırmalarda yaygın olarak kullanılmaktadır. CMC'nin özel tüyleri nedeniyle, ilaç dağıtımı ve özellikle oral uygulama maddesi olarak umut verici bir kullanım özelliği göstermiştir [64]. Genellikle biyouyumluluk, biyolojik olarak parçalanabilirlik, suda çözünürlük, bolluk, düşük maliyet ve çevre dostu olmanın faydalarını sunar. Özellikle son yıllarda, biyomedikal uygulamalar için selüloz ve türevleri gibi doğal polimerlere dayanan, genel absorbe edici materyallere kıyasla büyük miktarlarda su, tuzlu su veya fizyolojik solüsyonları absorbe etme kabiliyetine sahip üç boyutlu çapraz bağlı hidrofilik, lineer veya dallı polimerler olan süper emici hidrojeller (SAP) geliştirilmiştir.  Olumlu yapı stabilitesi ve biyouyumluluk özelliklerine rağmen, kimyasal olarak çapraz bağlı hidrojeller, polimerlerin (örneğin selüloz, kitosan) düşük suda çözünürlük ve yaygın olarak kullanılan kimyasal çapraz bağlayıcıların (örneğin formaldehit, glutaraldehit, epiklorohidrin) içsel sitotoksisitesi gibi dezavantajlar sunabilir. Bu dezavantajların üstesinden gelmenin bir alternatifi, suda çözünürlüğünü arttırmak için CMC gibi kimyasal olarak modifiye edilmiş polimer türevleri kullanarak hidrojel hazırlamak ve tüm süreç boyunca biyouyumlu ve çevre dostu çapraz bağlayıcıları (örneğin sitrik asit) kullanmaktır [24].   

Yara iyileşmesi sırasında, anjiyojenik kılcal filizler, fibrin / fibronektinden zengin yara pıhtısını istila eder ve birkaç gün içinde granülasyon dokusu boyunca mikrovasküler bir ağ halinde organize olur. Granülasyon dokusunda kollajen birikerek yara izi oluştururken, kan damarlarının yoğunluğu azalır. Endotel hücreleri, anjiyopoietin ve mast hücre triptaz gibi anjiyojenik sitokinler ve hücre dışı matris ortamı arasında dinamik bir etkileşim meydana gelir. Spesifik endotelyal hücre reseptörleri, yara onarımı sırasında kan damarlarındaki bu morfogenetik değişiklikler için kritiktir Özellikle, fibrin ve fibronektin için integrin reseptörü olan αvβ3, yara anjiyogenezi için gerekli görünmektedir  [65]. Yara iyileşmesinde birincil matrisler fibrin pıhtısı ve esas olarak yeni biriken kollajen tarafından oluşturulan granülasyon dokusudur. Bu yerel mikro ortamları temsil etmek için,  fibrin veya kolajen I'den oluşan biyomimetik hidrojeller kullanılır. Bu proteinler çok faydalıdır çünkü uygun bir iyonik kuvvetle kendi kendilerine birleşirler [1]. Fibrin, doku mühendisliğinde bir biyopolimer iskelesi olarak yaygın olarak kullanılan hemostazdan sorumlu kritik bir kan bileşenidir [66, 67]. Gil ve ark (2017) [39], yapmış oldukları çalışmada, muharebe yaralarında enfeksiyonu kontrol etmek için etkili bir ortam sağlamanın yanı sıra, iyileşme için gerekli olan konakçı hücrelerin toplanmasıyla iyileşmeyi iyileştirmek için bir araç formüle etmek gerekir. Bu sorunların üstesinden gelmek için, bir yarada uygulama kolaylığı ve stabilite için fibrin esaslı hidrojeller geliştirildi. Ahmed ve ark (2008) [66], iskele malzemesi olarak fibrin kullanarak organ ve doku rejenerasyonundaki en son gelişmeleri derlemişlerdir.

Dekstran, 1,6-glukozidik ve bazıları 1,3-glukozidik bağlantılar yoluyla uzun dallı zincirlere bağlanmış glikoz moleküllerinden oluşan, amilopektinin sindirilmesinden elde edilen doğal bir polisakkarittir [68, 69]. Bu polisakkaridin nispeten inert ve toksik olmayan davranışı sayesinde, düşük moleküler ağırlıklı dekstran plazma genişletici olarak kullanılabilmektedir [69]. Bu malzeme koloidal, hidrofilik, suda çözünür ve biyolojik sistemlerde etkisizdir ve hücre canlılığını neredeyse hiç etkilemez. Bu özellikler nedeniyle dekstran, antidiyabetik, antibiyotik, antikanser, peptid ve enzim dahil olmak üzere çeşitli terapötik ajanlar için bir taşıyıcı sistem olarak kullanılmaktadır [68]. Neovaskülarizasyon, derin yanık yaralanmalarında yara iyileşme sonuçlarının kritik bir belirleyicisidir. Dekstran bazlı hidrojellerin, üçüncü derece yanık yaralarında neovaskülarizasyonu ve cilt yenilenmesini teşvik etmek için öğretici iskeleler görevi görebileceği rapor edilmiştir. Dekstran hidrojelleri yumuşak ve esnektir, yanık yarası tedavisinin yönetimini iyileştirme fırsatları sunar [70]. Dekstranın en ilginç özelliği, glikokaliks taklit davranışı nedeniyle büyük biyouyumluluk ile birlikte kirlenmeme özelliğidir [69].

Yorum

Yaraların onarımı, insan yaşamı boyunca meydana gelen en karmaşık biyolojik süreçlerden biridir. Yara iyileşmesi, yaralanmayı takiben dokuyu yeniden yapılandıran hücreler, hücre dışı matris ve büyüme faktörleri arasındaki çoklu etkileşimleri içeren dinamik bir süreçtir. Bu nedenle, rejeneratif tıpta insan vücudunda bulunan karmaşık ortamı tamamen taklit edebilecek yeterli yapıları elde etmek için yeni teknolojiler hızla gelişmektedir. Kullanılacak malzeme türü, mükemmel sonuçların elde edilmesini belirleyen çok önemli bir seçimdir. Bu amaçla, yenilikçi bu malzemeler grubu içinde, doğal biyopolimerlerden elde edilen hidrojeller, kendisini çevreleyen mikro çevre ile etkileşime girebilen, biyouyumlu, toksik olmayan ve biyobozunur özellikleri dolayısıyla akıllı biyomalzemeleri temsil etmeleri açısından daha fazla avantaj sağlayabilir. Ancak, bu biyomalzemelerin mekanik özellikleri, hazırlanması ve standardizasyonu ile ilgili birçok yönün, klinik kullanım açısından hala geliştirilmesi ve iyileştirilmesi gerekmektedir. Şu anda piyasada bulunan pansuman türlerinden venöz bacak ülserleri, diyabetik yaralar gibi kronik yaraları tam olarak iyileştirebilen bir ürünün olmadığı belirtilmektedir. Bu nedenle, normal iyileşme sürecine müdahale eden başlıca faktörleri ele alan bir pansuman malzemesi geliştirmek, hastalara ve yara bakımını üstlenen sağlık personeline büyük ölçüde yardımcı olacaktır.

Gözden geçirilen yayınlar kapsamında bu derlemede, doğal olarak oluşan homopolisakkaritlere ve bunların diğer doğal olarak oluşan polimerlerle kombinasyonları ile hazırlanan hidrojel temelli farklı yara örtülerinin özellikleri sunulmuştur. Materyal seçimi, ideal bir yara pansumanını tasarlamak için önemli bir adımdır. Doğal olarak oluşan polimerler, içsel biyouyumlulukları, biyolojik olarak parçalanabilirlikleri ve cilt ve çevre dostu özelliklerinden dolayı mükemmel yara pansuman malzemeleridir. Bu yara örtüleri, yara iyileşmesini hızlandırmak için antibiyotikler, proteinler, metaller ve bazı biyoaktif maddeler içerebilir

Kitosan, mükemmel bir yara sargısı materyali sağlamak için üretim sürecinde kültür ortamına ilave edilerek bakteriyel selüloz ile birleştirilebilen fibroblast proliferasyonu, kolajen birikimi ve hyaluronik asit sentezi üzerinde olumlu etkileri olan antimikrobiyal aktiviteye sahiptir [71]. Antibiyotiklere karşı sürekli artan direnç ve bir dereceye kadar metalik nanopartiküllerdeki toksisite ile ilgili endişeler, alternatif antimikrobiyal ajanların araştırılmasını zorunlu kılmaktadır. 

Ayrıca, yara örtüleri ile biyosensörlerin entegre edilmesiyle pH'ı, nemi, enfeksiyonu izlemek veya malzemenin salgılanan ilaçlara tepkisini tetiklemek mümkün olmaktadır. Bu amaç için üretilecek yara örtüsü, uyarıcıya duyarlı olmalıdır, bu da doğal olarak oluşan polimerlerin doğal hallerinde elde edilmesi ile mümkün olabilecektir [72]. Bu nedenle, yara sargısı malzemelerini güvenilir bir şekilde kullanılabilen yeni uyarıcıya duyarlı doğal olarak oluşan polimerik sistemler geliştirmek, bizi doğal olarak oluşan polimerlere dayalı gelecekteki yara sargılarının üretimine bir adım daha yaklaştırabilir. 

Teşekkür: 

Bu çalışmaya katkılarından dolayı Uşak Üniversitesi Araştırma Fonu'na (Proje No: UPAP 06/ 2020/TP001) desteği için teşekkür ederiz

Kaynaklar

[1]   Moreno-Arotzena O,, Meier  J. G. ,  Amo C.,  García-Aznar J. M.   Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models, Materials, 2015, 8, 1636-1651, doi:10.3390/ma8041636

[2] Koehler, J., Brandl, F. P., Goepferich, A. M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds, European Polymer Journal, 2018, 100, 1-11.

[3] Carlson, B. 2016. Advanced Wound Care Markets Worldwide, Rockville, MD, USA: Kalorama Information.

[4] Ying H., Zhou J.,  Wang M.,  Su D.,  Ma Q., Lv G., Chen J.  In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing , Materials Science and Engineering: C, 2019,101,  487-498.  

[5] Balakrishnan B., Mohanty M., Umashankar PR., Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin, Biomaterials, 2005, 26, 32, 6335-6342.

[6] Mutlu S., Yılmaz E. Current Approaches in Wound Management, Gümüşhane University Journal of Health Sciences Rewiev, 2019, 8(4): 481 – 494.

[7] Kurtoğlu  A H.,  Karataş A. Current Approaches To Wound Therapy: Modern Wound Dressıngs,  J. Fac. Pharm, Ankara, 2009,  38 (3) 211-232.

[8] Şahiner, N., Sagbas, S., Şahiner, M., Silan, C., Aktas, N., Turk, M. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties, International Journal of Biological Macromolecules, 2016, 82, 150–159.

[9] Şahiner M., Sağbaş, S., Turan A., Erdugan H., Şahiner N.  Yara Kaplama Malzemesi olarak Kollajen Esaslı Hidrojel Filmleri, Journal of Graduate School of Natural and Applied Sciences, 2018, 4,2, 103-116.

[10] Dash M., Chiellini F., Ottenbrite R.M., Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science, 2011,  36, 8, 981-1014.

[11] Baghaie S.,  Khorasani M T., Zarrabi A., Moshtaghian J. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material, Journal of Biomaterials Science, Polymer Edition, 2017,  28,  18, 2220-2241.

[12] Calo E., Khutoryanskiy V V. Biomedical applications of hydrogels: A review of patents and commercial products, European Polymer Journal, 2015, 65, 252-267. 

[13] Pellá M C.G., Lima-Tenório M K., Tenório-Neto E T., Guilherme M R., Muniz E C., Rubira A F.   Chitosan-based hydrogels: From preparation to biomedical applications, Carbohydrate Polymers, 2018, 196, 233-245.

[14] Patel M., Nakaji‐Hirabayashi T., Matsumura K.Effect of dual‐drug‐releasing micelle–hydrogel composite on wound healing in vivo in full‐thickness excision wound rat model, Kjournal Of Bıomedıcal Materıals Research Part A ,2019, 107A, 5.uaki Matsumura

[15] Ersoy Y., Duran M., Tayyar A E. Tıbbi Tekstiller ve Yara Örtüsü, Düzce Üniversitesi Bilim ve Teknoloji Dergisi,2015, 3, 451-458

[16] Dhivya S.,  Padma V V., Santhini E. Wound dressings – a review, Biomedicine (Taipei). 2015, 5(4): 22.

[17] Singh R., Singh D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing , J Mater Sci: Mater Med ,2012, 23:2649–2658 DOI 10.1007/s10856-012-4730-3

[18] Sakthiguru N., Sithiqu MA. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application, International Journal of Biological Macromolecules, 2020, 152, 1, 873-883.

[19] Chimene D., Kaunas R.,  Gaharwar A K. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies, Advanced Materials, 2020,  32, 1, 1902026.

[20] Şimşek, M. 2004. “Dekstran hidrojellerin enzimatik bozunma kinteğinin estrümantal tekniklerle incelenmesi”, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 0-103.

[21] Ullah F., Othman M B H.,   Javed F., Ahmad Z., Md.Aki H. Classification, processing and application of hydrogels: A review, Materials Science and Engineering: C, 2015, 57, 1, 414-433.

[22] Pasinli A. Biyomedikal Uygulamalarda Kullanılan Biyomalzemeler, Makine Teknolojileri Elektronik Dergisi 2004, (4) 25-34. 

[23] Çakmak AS. Investıgatıon Of Osteogenıc Dıfferentıatıon Of Mesenchymal Stem Cells Wıth Scaffolds Supported By Bıophysıcal And Bıochemıcal Stımulants, Hacettepe Üniversitesi FBE, Doktora tezi, 2014.

[24] Capanema N S V., .Mansur A A P.,  Jesus A C., Carvalho S M.,  Oliveira L C., Mansur H S. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications, International Journal of Biological Macromolecules, 2018, 106, 1218-1234. 

[25] Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Progress in Polymer Science, 2005,  30, 1, 38-70.

[26]  Ulusoy A., Dikmen N. Applications of Hydrogel in Medicine, Archives Medical Review Journal, 2020; 29(2), 129-137 doi:10.17827/aktd.603432.

[27] Kadokawa J I. Ionic Liquid as Useful Media for Dissolution, Derivatization, and Nanomaterial Processing of Chitin, Green and Sustainable Chemistry, 2013, .3, 2A, ID:31971,7 pages DOI:10.4236/gsc.2013.32A003

[28] Yıldırım N., Küçük İ. Preparing and characterization of St.John’s Wort (Hypericum perforatum) incorporated wound dressing films based on chitosan and gelatin. Journal of the Faculty of Engineering and Architecture of Gazi University, 2020,  35:1 127-135

[29] Bilal M.,Rasheed T., Zhao Y., .Iqbal H MN. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties, International Journal of Biological Macromolecules, 2019, 124, 1, 742-749.

[30] Yadav H K.S., Dibi M., Mohammed A., Emad A. Chapter 13 - Thermoresponsive Drug Delivery Systems, Characterization, and Applications, Characterization and Biology of Nanomaterials for Drug Delivery, Nanoscience and Nanotechnology in Drug Delivery Micro and Nano Technologies, 2019, 351-373.

[31] Rusanu A.,  Tamaş AI., Vulpe R., Rusu A., Butnaru M., Vereştiuc L. Biocompatible and Biodegradable Hydrogels Based on Chitosan and Gelatin with Potential Applications as Wound Dressings, Journal of Nanoscience and Nanotechnology, 2017,  17, 7, 4584-591(8)https://doi.org/10.1166/jnn.2017.14298.

[32] Işık G., Yalçın H T., Cesur S. AYPE/Kitosan Polimerik Kompozitlerin Antimikrobiyal Gıda Ambalajı Uygulamaları, Plastik Ambalaj Teknolojisi Dergisi, 

 

[33] Zargar  V.,  Asghari M., Dashti A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications, ChemBioEng Rev, 2015, 2, No. 3, 204–226.

[34] Del Valle L J., Díaz A., Puiggalí J. Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives , Gels 2017, 3, 27; doi:10.3390/gels3030027.

[35] Kutlusoy, T. 2016. “Kitosan-ko-hyaluronik asit kriyojellerinin hazırlanması ve karakterizasyonu”,  Yüksek Lisans Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 0-112.

[36] Muzzarelli, R.A.A. 2009. “Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone”, Carbohydrate Polymers, 76, 167–182.

[37] Taşkın, P. 2015. “Kitosanın radyasyonla bozunmasına deasetilasyon derecesinin etkisi”, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 0-80.

[38] Zhang Y, Wang Q-S, Yan K, Qi Y, Wang G-F, Cui Y-L. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications”, J Biomed Mater Res Part A, 2016, 104, 1863–1870.

[39] Gil J.,   Li J., Valdes J.,  Harding A., Solis M., Davis S C.,  Christy R J.  A  PEGylated fibrin hydrogel‐based antimicrobial wound dressing controls infection without impeding wound healing, International Wound Journal, 2017,https://doi.org/10.1111/iwj.12791

[40] Gokarneshan N. 19 - Application of natural polymers and herbal extracts in wound management, Advanced Textiles for Wound Care (Second Edition), The Textile Institute Book Series, 2019, Pages 541-561.

[41] Şahan G., Demir A. Kitosan Biyopolimerinin Formları Ve Tekstil Uygulamaları. XIII. Uluslararası İzmir Tekstil ve Hazır Giyim Sempozyumu, 2014

[42]  Li P., Wang Y., Peng Z., She F., Kong L. Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends, Carbohydrate Polymers, 2011, 85, 3, 1, 698-704.

[43] Pillai C.K.S., Paul W., Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science, 2009, 34, 7, 641-678.

[44] Kumirska J., Czerwicka M., Kaczyński  Z., Bychowska A., Brzozowski  K., Thöming J., Stepnowski  P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan, Mar. Drugs 2010, 8, 1567-1636; doi:10.3390/md8051567 

 [45] Salehi A O M., Nourbakhsh M S., Rafienia M., Baradaran-Rafii A.,  Keshel S H.  Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold, International Journal of Biological Macromolecules, 2020, 161, 377-388.

[46] Khutoryanskiy VV. Advances in Mucoadhesion and Mucoadhesive Polymers, Macromolecular Bioscience, 2011, 11, 6, 748-764.

[47]  Ways T M M., Lau W M., Khutoryanskiy V V. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems, Polymers 2018, 10(3), 267; https://doi.org/10.3390/polym10030267

[48] Rodrigues F H. A., Spagnol C., Pereira A G. B., Martins A F.,  Fajardo A R.,  Rubira A F.,  Muni E C. Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin, J. APPL. POLYM. SCI. 2014, DOI: 10.1002/APP.39725.

[49] Islam, N., Dmour, I., Taha, M. 2019. “Degradability of chitosan micro/nanoparticles for pulmonary drug delivery”, Heliyon, 5, e01684.

[50] Akalın, G. O. 2011.  “Jelatin hidrojellerinin sentezlenmesi, şişme/bozunma davranışlarının incelenmesi ve uygun immobilize Lipaz-Jelatin hidrojel sisteminin oluşturulması”, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 0-105.

[51] Kozlowska J., Stachowiak N., Sionkowska A. Collagen/Gelatin/Hydroxyethyl Cellulose Composites Containing Microspheres Based on Collagen and Gelatin: Design and Evaluation, Polymers 2018, 10(4), 456; https://doi.org/10.3390/polym10040456.

[52]  Catoira M C.,  Fusaro L.,  Francesco D D.,  Ramella M.,  Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications, Journal of Materials Science: Materials in Medicine, 2019,  30, Article number: 115 

[53] Topuz F C. Jelatin Bazlı Yenilebilir Film ve Kaplamalar. Akademik Gıda, 2018, 16(3) (2018) 332-339

[54]  Aykın E., Erbaş M. Farklı Kaynaklardan Üretilen Jelatinin Özellikleri Ve Sağlık Üzerine Etkileri. Gıda, 2016, 41 (3): 179-186.

[55] Raga F., Sanz-Cortes M., Bonilla F.,  Casañ E M.,  Bonilla-Musoles F., Reducing blood loss at myomectomy with use of a gelatin-thrombin matrix hemostatic sealant, Fertility and Sterility, 2009, 92, 1, 356-36

[56] Erge A., Zorba Ö. Functional Properties of Gelatin and Its Use in Food Industry, Turkish Journal of Agriculture-Food Science, 2018, DOI: https://doi.org/10.24925/turjaf.v6i7.840-849.1779.

[57] Mousavi S., Khoshfetrat A B., Khatami N.,  Ahmadian M., Rahbarghazi R. Comparative study of collagen and gelatin in chitosan-based hydrogels for effective wound dressing: Physical properties and fibroblastic cell behavior, Biochemical and Biophysical Research Communications, 2019, 518, 4, 22, 625-631

[58] Bigi A., Cojazzi G., Panzavolta S., Roveri N., Rubini K. Stabilization of gelatin films by crosslinking with genipin, Biomaterials, 2002,  23, 24, 4827-4832

[59] Norziah M.H., Al-Hassan A., Khairulnizam A.B., Mordi M.N., Norita M. Characterization of fish gelatin from surimi processing wastes: Thermal analysis and effect of transglutaminase on gel properties, Food Hydrocolloids, 2009, 23, 6, 1610-1616

[60]  Tan W H.,  Takeuchi S. Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation, Adv. Mater. 2007, 19, 18, 2696–2701.

[61] Burdick J A.,  Prestwich G D. Hyaluronic Acid Hydrogels for Biomedical Applications, Adv. Mater. 2011, 23, H41–H56

[62] Kakehi K., Kinoshita M., Yasueda S. Hyaluronic acid: separation and biological implications, Journal of Chromatography B, 2003,  797, 1–2, 347-355.

[63]Mohammadinejad R., Kumar A., Ranjbar-Mohammadi M., Ashrafizadeh M., Han SS., Khang G., Roveimiab Z. Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review, Polymers, 2020, 12, 176; doi:10.3390/polym12010176.

[64] Javanbakht S., Shaabani A. Carboxymethyl cellulose-based oral delivery systems, International Journal of Biological Macromolecules, 2019, 133, 15, 21-29.

[65] Tonnesen M G., Feng X., Clark R A.F. Angiogenesis in Wound Healing, Journal of Investigative Dermatology Symposium Proceedings, 2000,  5, 1, 40-46. 

[66] Ahmed  T A E., Dare E V.,  Hincke M.  Fibrin: A Versatile Scaffold for Tissue Engineering Applications, Tissue Engineering Part B: Reviews, 2008, 14, 2, https://doi.org/10.1089/ten.teb.2007.0435

[67] Malafaya P B., Silva G A., 1Reis R L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Advanced Drug Delivery Reviews, 2007, 59, 2007, 207–233.

[68] Hwang   M R.,  Kim J O.,  Lee J H.,  Kim Y I., Kim J H., Chang S W., Jin S G., Kim J A., Lyoo W S., Han S S., Ku S K., Yong C S., Choi H G. Gentamicin-Loaded Wound Dressing With Polyvinyl Alcohol/Dextran Hydrogel: Gel Characterization and In Vivo Healing Evaluation, AAPS PharmSciTech, 2010, 11, 3, DOI: 10.1208/s12249-010-9474-0.

[69]  Chirani N., Yahia L’H.,  Gritsch L.,  Motta F L., Chirani S.,  Faré S. History and Applications of Hydrogels, Journal of Biomedical Sciences ISSN 2254-609X, 2015, 4, 2:13.

[70] Sun G.,  Zhang X.,  Shen Y.,  Sebastian R.,  Dickinson L E.,  Fox-Talbot K.,  Reinblatt M.,  Steenbergen C.,  Harmon J W., Gerecht S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing, PNAS, 2011, 27, 108 (52) 20976-20981; https://doi.org/10.1073/pnas.1115973108

[71] Paul W., Sharma C P. Chitosan and Alginate Wound Dressings: A Short Review, Trends Biomater. Artif. Organs, 2004, 18 (1), 18-23.

[72] Amin M C I M., Ahmad N., Halib N., Ahmad I. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery, Carbohydrate Polymers, 2012, 88, 2, 465-473.

Dilruba Öznur Kazancı Göğüş

Ayşe Pınar Tüzüm Demir*

*Uşak Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü,

pinar.demir@usak.edu.tr

Plastik Film Ambalaj Malzeme Bileşenlerinin Migrasyonu

Özet

Günümüzde plastikler hafif olmaları, esnek/sert yapıda olabilmeleri ve kırılma gibi dış darbelere dayanıklı olma özelliklerinden dolayı gıda başta olmak üzere birçok ürünün ambalajlanmasında tercih edilmektedirler. Plastik ambalajların üretimi sırasında kullanılan kimyasal maddelerin gıda ile etkileşimi ve transferi plastik ambalajlarda migrasyon olarak tanımlanmaktadır. Migrasyonun plastik ambalajlarda oluşması gıda yapısı, temas süresi, temas sıcaklığı, ambalaj yapısı ve ambalaj içeriğindeki bileşenlere bağlıdır. Özellikle uygun yöntemlerle işlenmeyen plastiklerin yapılarında kalan serbest monomerler ve düşük molekül ağırlıklı bileşikler migrasyona neden olur. Migrasyonun belirli değerlerin üzerinde ortaya çıkması da insan sağlığı açısından olumsuz etkilere neden olabilir.

Çalışma kapsamında migrasyonu ortaya çıkaran faktörler, plastik ambalaj malzemelerinin yapısındaki kimyasal maddelerin migrasyona etkisi ve migrasyon testleri incelenerek baskılı ve baskısız plastik ambalajlarda migrasyon konusu irdelenmiştir.

Anahtar Kelimeler: Polimerler, Ambalaj, Kontaminasyon, Migrasyon

1.Giriş

Ambalaj; her türlü ürünü üreticiden tüketiciye ulaşıncaya kadarki süreçte ve tüketim süresi boyunca koruyacak nitelikte olmalıdır. Bazı ambalaj malzemeleri fiziksel ve kimyasal yapısına ve dış etkenlere bağlı olarak gıdaya nüfus etme eğiliminde olabilirler. Gıdalarla temas eden ambalaj malzemeleri gıdaların yapılarının bozulmasına sebebiyet verebilirler. Özellikle ambalaj ürünlerinde yaygın olarak kullanılan plastik esaslı malzemeler uygun olmayan işleme koşulları ve farklı ortam sıcaklıkları sonucunda migrasyonu oluştururlar. Migrant olarak gıdaya geçen maddeler gıdanın organoleptik özelliklerini etkileyebilir ve bunlardan bazıları toksik, kanserojen vb. olabilirler. Zararlı olan bileşenlerin gıdaya geçmesi insan sağlığı ve çevre konusunda olumsuz etkilere neden olabilir. Örneğin; gıda ambalajı olarak kullanılan PVC’nin yapısındaki vinil klorür kanserojendir. Fakat polimerizasyon sırasında vinil klorür monomeri PVC’ye dönüşür ve böylece serbest vinil klorür miktarı insan sağlığına zararlı olmayacak düzeye inerse PVC’nin gıda ambalajı olarak kullanımı uygun olur [1].

Ambalaj malzemesinden gıdaya olan göç, gıda için bozucu veya iyileştirici sonuçlar doğurabilir. Toksik bileşenlerin gıdaya olan migrasyonu gıda güvenliğine yönelik ciddi bir risktir. Benzer şekilde belirli maddelerin gıdaya migrasyonu yine gıdanın duyusal olarak bozulmasına neden olabilir. Diğer bir yandan antioksidanların ve anti mikrobiyal maddelerin gıda üretiminde belirli oranda gıdaya katkı maddesi olarak migrant olması ürünün raf ömrünü iyileştirmektedir [2].

Gıda üretiminde ambalajın amacı, içerisine konulan ürünü mikrobiyal – kimyasal kontaminasyonlardan, oksijen, su buharı ve ışıktan korumaktır. Ambalaj malzemesi insan sağlığını tehdit eden bir faktör olmamalıdır [3].

Tüketici sağlığını korumak ve gıda maddelerine migrasyonla herhangi bir kirliliğin gelmesini engellemek için plastik malzemelerle ilgili iki tür migrasyon limiti oluşturulmuştur: Birincisi gıda ile temas eden malzemelerden gıda maddesine geçebilen tüm maddeler için oluşturulmuş bir limittir ve toplamda 10 mg madde/dm2 (ambalaj malzemesinin alanı) geçmemelidir. İkincisi spesifik migrasyon limitidir ve gıdaya geçebilen her bir madde için toksikoloji değerlendirilmesine dayanarak sabitlenmiştir. Spesifik migrasyon limiti genelde Avrupa Bilimsel Gıda Komitesi tarafından belirlenen kabul edilebilir veya tolere edilebilen günlük alıma göre oluşturulur. Spesifik malzemeler için mevzuatlar çerçeve çalışmaları tüzüğünde listelenen malzemeler grubunu kapsar. Son zamanlarda spesifik malzemelerdeki mevzuatlar seramikler (kadmiyum ve kurşun migrasyon limiti), rejenere edilmiş selüloz filmler, plastikler ve geri dönüşümlü plastikler içindir [4].

İnsan sağlığı ve çevre açısından tehdit oluşmaması için diğer ambalaj türlerinde olduğu gibi plastik ambalajda da migrasyonu ortaya çıkaran faktörler belirlenerek güvenilir gıda ambalajları üretilmelidir. Migrant olan maddelerin etkileşim türleri ve plastiğin yapısındaki kimyasalların ne derece migrasyona neden oldukları migrasyon testleri yardımıyla belirlenmelidir. Böylelikle üretilen plastik ambalajların gıdaların organoleptik özelliklerini ve insan sağlığını etkilememesi için gerekli önlemler alınabilir.

2.Ambalaj Malzemesi Olarak Kullanılan Plastik Malzemeler

Ambalaj malzemesi olarak kullanılan ve ticari adını plastik olarak nitelendirdiğimiz termoplastikler, ısıtıldığı zaman eriyebilen ve yeniden şekillendirilebilen polimerlerdir. Bir kere eritildikten sonra enjeksiyon kalıplama ve ekstrüzyon gibi tekniklerle her türlü şekilde kalıplanabilme özelliğine sahiptirler. Bu da plastik malzemenin gıda ambalajlamada tercih edilme sebeplerinden biridir [3]. Plastikler yapısal özelliklerine göre farklı türlerde olabilmektedirler. 

2.1.Plastik türleri

Polietilen Tereftalat (PET): Tamamen geri dönüştürülebilir yapıda olan polietilen tereftalat; polyester ailesine ait poli kondenzasyon metoduyla üretilen termoplastiktir. Polyester grubundan olan PET, doğrusal bir termoplastik polimerdir. Genellikle sentetik elyaf, gıda paketleme endüstrisi ve özellikle şişeleme gibi alanlarda oldukça yaygın kullanılmaktadır. Formülü (C10H8O4) n’dür. Erime 235°C ve 260°C arasında olan polietilen terefitalat; yüksek sertlik, iyi işlenebilirlik, boyutsal kararlılık ve güneş ışınlarına (UV) dayanımı özellikleriyle tercih edilmektedir. Özellikler yiyeceklerin ve içeceklerin ambalajlanmasında koku, su ve gaz geçirgenlikleri düşük olduğu için kullanılmaktadırlar.

Yüksek Yoğunluklu Polietilen (HDPE): Paketleme, ince film kaplama, boru gibi üretim endüstrilerinde kullanılan HDPE; Polietilen petrolden üretilen bir termoplastik polimerdir. 

Düşük Yoğunluklu Polietilen (LDPE): Düşük yoğunluklu bu polietilen, radikal zincir polimerizasyonu yöntemi ile sentezlenir. HDPE‘ye göre daha çok dallanma gösteren bir polimerdir. LDPE gıda ambalajı olarak en yaygın kullanıma sahiptir.

Polivinil Klorür (PVC): Vinil klorür monomerlerinin polimerizasyonu ile elde edilir. Uzun ömürlü, hafif ve sudan etkilenmeyen yapıları tercih edilmesini sağlamaktadır. Termoplast bir ürün olarak farklı işlemeler neticesinde sert, yumuşak, opak ve saydam formlarda elde edilebilmektedir. Genellikle yumuşak formda elde edilen polivinil klorürler film veya folyo gibi malzemelerin üretiminde ve ambalajlamada yer alırlar.

Polipropilen (PP): Polipropilen kimyasal solventlere, asit ve bazlara karşı çok dirençlidir. Polipropilen monomer propilenin polimer hale getirilmesiyle elde edilen bir termoplastiktir. Polietilenden sonra dünyada kullanımı en yaygın olan ikinci plastik türüdür. 

Polistiren (PS): Ucuz ve sert bir termoplastik polimer olan Polistiren, kolay işlenir ve yoğurt, ayran, dondurma ambalajları gibi birçok gıdanın ambalajlanmasında kullanılır. Polistiren, aromatik stiren monomerinden sentezlenir. 

Polikarbonat (PC): Düşük özgül ağırlığa sahip olan Polikarbonat yüksek darbelere dayanıklıdır. Kolay işlenebilir olmasından dolayı ticari polimerler arasında yer almaktadır. Gıda ambalajlarında kullanımı tercih edilir.

2.2. Plastik üretiminde kullanılan katkı maddeleri

Plastiklerin üretiminde kullanılan katkı maddeleri katalizörler, emülgatörler, plastifiyanlar, ısı ve ışık stabilizörleri, antioksidanlar, UV ışığı absorbe ediciler, antistatik maddeler, renklendiriciler, dolgu maddeleri ve yağlayıcılardır [5].

Plastik ambalaj üretiminde; iki yüzey arasındaki sürtünme, aşınma ve ısıyı azaltmak için yağlayıcılar, plastiğe rengini vermek için renklendirici olarak pigment veya boya, plastiğe yumuşaklık ve esneklik sağlaması için plastifyanlar, plastiğin kolay işlenebilmesi için dolgu maddeleri, UV ışınlardan etkilenmemesi için UV stabilizörler kullanılır.

2.3.Plastik malzemelerden gıdaya migrant olabilen maddeler

Plastik malzemeden gıdaya migrant olabilecek migrantlar; başlangıç bileşenleri, monomerler, katalizörler, çözücüler ve ambalaj katkılarıdır. Bunların yanı sıra, plastikleştiriciler, ışık stabilitörleri, ısıl stabilitörler, yağlanma ajanları, statik elektrik önleyiciler, optik özellikleri modifiye ediciler, bütil hidroksitoluen (BHT) ve Irganox gibi antioksidan özellikteki koruyucu katkı maddeleri ile adipik asit, tolüen, bütanon 2 – etil asetat, hekzan gibi çözücüler de materyalden ürüne migrant olabilmektedir [6]. Plastik ambalaj malzemelerinde bulunan ve migrant olan bu katkı maddeleri ve çözücüler çeşitli sağlık sorunlarına neden olabilmektedir (Tablo 1).

Tablo 1. Plastik ambalaj malzemelerinin tartışılan insan sağlığına zararları  [3].

 

 

 

 

 

 

 

 

 

 

 

 

3.Plastik Ambalajlarda Migrasyonu Ortaya Çıkaran Faktörler 

Migrasyon; ambalajlama ve depolama sıcaklığı, uv ışığına maruz kalma ve ürünün depolama süresi gibi koşullara bağlı olarak ambalaj materyali ile gıdanın etkileşime girmesidir [6].

Migrasyon, toplam ve spesifik olarak ambalajdan - gıdaya ve gıdadan - ambalaja iki yönlü gerçekleşir. Toplam migrasyon, ambalaj malzemesinden gıdaya geçen toplam madde miktarıdır. Spesifik migrasyon ise özellikle toksikolojik açıdan önemli olan ya da migrasyon mekanizmasını ve miktarını belirlemek için düzenlenmiş deneylerde kullanılan bileşiklerden bir ya da iki tanesinin belirlenmesidir [1]. Ambalaj malzemesi ile gıdanın etkileşimi sonucu ortaya çıkan migrasyon difüzyondur. Bu difüzyonda ambalaj malzemesinden gıdaya düşük molekül ağırlığına sahip bileşenler transfer olurken, kimyasal potansiyeli yüksek olan alandan düşük olan alana doğru difüzlenmeye bir eğilim olur. Plastik ambalaj malzemesinden gıdaya geçiş yapması olası maddeler düşük molekül ağırlığına sahip bileşenlerdir. Bu bileşenler; plastik ambalaj malzemesinin yapısındaki monomerler veya oligomerler olabildiği gibi plastik malzemeye polimerin işlenmesi sırasındaki ilave edilen katkı maddeleri de olabilir [7].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 1.  Polimer – Gıda Etkileşiminde Migrasyon Modeli [7]

Şekil 1 incelendiğinde polimer tabakasına geçen gıda ve bu gıda bileşeniyle şişen bir ara polimer tabakası görülmektedir. Katkı maddelerine ait konsantrasyon eğimi; şişme olmayan polimer tabakasında difüzyonun gerçekleştiği, şişmenin görüldüğü tabakada ise katkı maddelerinin çok daha hareketli olduğu ve ara yüzeyde konsantrasyonun birden bire değiştiği varsayılarak belirlenmektedir [7].

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 2.  Plastik malzemenin sıvı gıdayla olan etkileşimi 

Plastik ambalaj malzemesinde migrasyonu ortaya çıkaran faktörler farklı parametrelere bağlı olarak değişebilmesine karşın başlıca etkenler bulunmaktadır. Bunlar;

•Temas Süresi: Plastik ve gıdanın temas süresi doğru orantılı bir şekilde migrasyonun oluşmasında etken olur (Şekil 2).  

•Sıcaklık: Sıcaklığın belirli dereceler üzerindeki artışı ile plastik malzeme migrasyonu artabilir.

•Migrantların konsantrasyonu: Malzemenin yapısında bulunan katkı maddelerinin (migrantlar) başlangıç konsantrasyonu, migrasyon oluşumu ve artışıyla beraber doğru orantılıdır.

•Plastik malzemenin kalınlığı: Plastik malzemenin belirli bir kalınlığa kadar migrasyon değeri kalınlıkla doğru orantılı olarak artmaktadır. Migrasyon artışının son bulduğu bu malzeme kalınlığı “Sınır Kalınlık” olarak ifade edilir ve her bir plastik malzemesinin türüne göre bu değer farklılık gösterebilir.

•Plastik ve migrantların yapısal özelliği: Yapılan araştırmalar plastik çeşitlerine göre migrasyon değerlerinin farklılık gösterdiğini ortaya koymaktadır. Plastik malzemeler çeşitlerine göre yoğunluk, erime akış indeksi gibi farklı yapısal özelliklerdedir ve bu farklılıklar migrasyon değerlerinde değişime neden olmaktadır. Migrasyon değerleri plastik türlerine göre sırasıyla LDPE > HDPE > PP > HIPS > PS > Sert PVC şeklinde giderek azalan bir yapıdadır. Plastiğin yoğunluğunun artmasıyla migrasyon değerinde azalma gerçekleşmektedir. Bunun yanı sıra plastik malzemeden gıdaya geçiş yapan migrantların molekül ağırlıkları migrasyonu etkilemektedir (Tablo 2).

Tablo 2. Molekül ağırlıklarına bağlı olarak migrantların davranışları [7].

 

 

 

 

 

 

 

 

 

 

 

4.Migrasyon Testleri

Yasal koşullara göre gıdayla temas eden her bir ambalaj malzemesi için migrasyon değerleri belirli bir sınırın altında olmalıdır. Üretilen ambalajların bu sınır değerin altında olup olmadığını belirlemek üzere migrasyon testleri yapılmaktadır. Plastik malzemeden gıdaya geçen maddelerin değerini belirlenmek için “toplam migrasyon testleri” ve “spesifik migrasyon testleri” yapılmaktadır [2].

Toplam Migrasyon Testleri: Toplam migrasyon testlerinde ambalajdan gıdaya geçen tüm maddelerin (monomerler, katkı maddeleri vb.)  toplam miktarı belirlenmektedir [7]. Toplam migrasyon testleri gıdaya temas eden plastik esaslı malzemelere uygulanır. 

Toplam migrasyon testleri gerçekleştirilirken plastik materyalin gıda simulantında bekletme süre ve sıcaklığı olarak o gıdanın gerçekteki saklama koşullarını (sıcaklık/süre) uygulamak çoğu zaman olanaksızdır. Bu nedenle migrasyon testlerini daha pratik hale getirmek için aynı miktarda madde geçişini sağlayabilecek şekilde gerçek kullanım koşullarından daha yüksek sıcaklıklarda daha kısa sürede uygulanabilecek test koşulları geliştirilmiştir [7]. Geliştirilen bu koşullar birçok ülkede standardize edilmiştir. 

Spesifik Migrasyon Testleri: Spesifik göç, belirli maddelerin toksikolojik önemi ile sınırlı göçünü ifade eder [2]. Spesifik migrasyon özellikle toksikolojik açıdan önemli olan ya da migrasyon mekanizmasını ve miktarını belirlemek için düzenlenmiş deneylerde kullanılan bileşiklerden bir veya birkaç tanesinin belirlenmesi amacıyla yapılır [8].

Spesifik migrasyon özellikle toksik etkisi olan maddelerin geçiş miktarının belirlenmesi açısından önemlidir. Madde göçünün limitlerin altında olup olmadığının kontrol edilmesinde uygulanır. Toplam migrasyon hem toksik maddelerin hem de toksik olmayan maddelerin toplam göç miktarını verirken spesifik migrasyon yalnızca toksik maddelerin göç miktarını verir [7].

5.Sonuçlar

Plastik film ambalaj malzeme bileşenlerinin yapısında bulunan katkı maddeleri ve konu ile ilgili yapılan çalışmalar incelendiğinde görülmüştür ki; bu maddelerin gıda ile etkileşimleri sonucunda insan sağlığını olumsuz etkileyebilecek koşullar ortaya çıkabilmektedir. Özellikle migrasyonu ortaya çıkaran sıcaklık, temas süresi gibi faktörler dikkate alınmadığında bileşenlerin etkileşimi ile gıdanın yapısını bozan migrasyon aynı zamanda insan sağlığı için de bir tehdit olmaktadır. Bu tehdidi önlemek amacıyla zorunlu yasal düzenlemeler ve standardizasyonlar dikkate alınmalıdır. 

Güvenilir gıda anlayışı kapsamında gıdanın raf ömrü ve gıdanın organoleptik özellikleri ambalajın kalitesine bağlıdır. Plastik film ambalajlarda ise kaliteyi belirleyen en önemli faktörlerden birisi plastiğin yapısındaki bileşenlerin migrasyonunun belirli yasal limitler altında olmasıdır. Bu yasal limiter ve analiz yöntemleri ülkemizde ve dünyada belirli kuruluşlar tarafından belirlenmiştir. Ülkemizde güvenilir gıda ambalajı üretmek için Türk Gıda Kodeksi tarafından “Gıda Maddeleri ile temasta bulunan madde ve malzemeler tebliği”  ile temasta bulunan madde ve malzemelerin tekniğine uygun ve hijyenik şekilde üretim, işleme, depolama, taşıma ve pazarlamasını sağlamak üzere bu madde ve malzemelerin özellikleri belirtilmektedir. Yine ülkemizde Türk Gıda Kodeksi tarafından plastik malzemelerin migrasyonuna ilişkin olarak “Gıda Maddeleri ile Temasta Bulunan Plastik Madde ve Malzemelerin Bileşenlerinin Migrasyon Testi İçin Temel Kurallar Tebliği” ile gıda maddeleri ile temasta bulunan plastik madde ve malzemelerin bileşenlerinin gıdaya migrasyonuna ilişkin analizler için gerekli olan kurallar belirtilmiştir.

Sonuç olarak; plastik esaslı ambalajların üretiminde migrasyonun önemli bir etken olduğu dikkate alınarak yasal sınırlamalara ve test sürecindeki standardizasyonlara uygun üretim yapılmalıdır. Böylelikle kanser, karaciğer hastalıkları, cilt sorunları gibi insan sağlığını olumsuz etkileyebilecek durumlar önlenmiş olacaktır.

6.Kaynaklar

[1]Kızılırmak, Ö., (1996), “Çeşitli Plastik Ambalajlardan Gıdalara Geçen Toplam Madde (Toplam Migrasyon) Miktarlarının Belirlenmesi”, Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 5 – 8, 24 – 25.

[2]Meulenaer, B. D., (2002), “Chemical Interactions Between Packaging Materials and Foodstuffs”, Ghent University Open Archive, 9, 37.

[3]Yıldız, F., İlalan, K., (2013), “ODTÜ Gıda Ambalaj Malzemeleri Araştırma Projesi”, Orta Doğu Teknik Üniversitesi Gıda Mühendisliği Bölümü, Sağlıklı Yaşam Projesi, 21-28, 180, 185.

[4]https://firatozel.wordpress.com/ , (Erişim Tarihi: 20.09.2018 ), “Gıda Ambalajlarında Migrasyon”,  Açık arşiv Pdf, 4.

[5]Çinibulak, P., (2010), “Gıda Ambalajlarında Migrasyon”, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 19-22, 29.

[6]Altuntaş, Ü., (2014), “Türkiye’de Satışa Sunulan Bazı Gıdalarda Ambalaj Materyallerinin Migrasyonun Ölçülmesi”,  İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü,  Yüksek Lisans Tezi,   5, 9, 14.

[7]Çalışkan, S., (2001), “Yağlı Gıdaların Ambalajlanmasında Kullanılan Bazı Plastik Materyallerin Toplam Migrasyon Değerlerinin Saptanmasında İzooktan Kullanılması”, Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 17, 22, 23.

[8]Doğan, C., (2010), “Gıda ile Temas Eden Madde ve Malzemeler, Migrasyon Testleri ve İlgili Yönetmelikler”, Tübitak MAM, İstanbul, 9.

[9]Ardic, M., Kahve, H. I., Duran, A., (2015), “Chemical Migration in Food Technology”,  Academic Journal of Science,  ISSN: 2165-6282,   164, 166.

[10]Esmer, Ö. K., (2003), “Karbondioksitli İçecek Ambalajı Olarak Kullanılan Pet Şişelerin Bazı Migrasyon Özeliklerinin Belirlenmesi”, Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 2.

[11]Özhan, G., (2016), “Gıda Ambalaj Materyallerinin Güvnilirliği”, (AVES İstabul) İstanbul Üniversitesi Akademik Veri Yönetim Sistemi Açık Arşiv, 5, 10.

[12]Tural, S., (2013), “Gıda Ambalajları ve Migrasyon”, Michigan Eyalet Üniversitesi -Samsun Gıda Tarım ve Hayvancılık Müdürlüğü Gıda ve Yem Şube Müdürlüğü, Tarım Bakanlığı Açık Arşiv, 18, 19, 21.

Öğr. Gör. Pelin HAYTA

Doç. Dr. Semiha YENİDOĞAN

Doç. Dr. Cem AYDEMİR

Öğr. Gör. Begüm MUTLU

Bu makale 6.Uluslararası Matbaa Teknolojileri Sempozyumu’nda yayınlanmıştır.

Sürdürülebilir Ürün Yaşam Döngüsü Yönetimi Yaklaşımı: PLM

Özet

Sürdürülebilir kalkınma, dünya çapındaki temel sorunlardan biri olmuştur. "Yeşil bir şirket" olmak için, ekomarka ve geri dönüşüm yaklaşımı endüstrilerce iyi anlaşılmış, fakat işletmelerdeki istenmeyen israf etkisi her zaman fark edilemez. Geleceğin endüstrileri, kendini adamış kişiler aracılığıyla tüm tedarik zinciri içinde sorumlulukları paylaşan ve gerçekleştirilmesi gerekilen bir Yeşil Ürün Yaşam Döngüsü Yönetimi stratejisine sahip olmalıdır.

Bu çalışma, yeşil ürün yaşam döngüsüne yönelik temel aşamaları içeren bir yaklaşımı açıklamaktadır: tasarım, üretim ve hizmet, kullanılabilirlik ve geri kullanım. Tüm bunlar irdelendiğinde, ürün yaşam döngüsünü dikkate alan sürdürülebilir ürün geliştirme için bir çerçeve önerilmektedir.

Anahtar Kelimeler: Sürdürülebilirlik, Ürün Yaşam Döngüsü Yönetimi, Yeşil Üretim, Ürün Geliştirme

Bir Ambalaj Olarak Yumurta Viyolünün Önemi ve Sektördeki Güncel Gelişmeler

Yumurta doğal bir ambalaja (kabuk) sahip olsa da son derece kırılgan bir üründür ve kullanım ve taşıma sırasında kabuk hasarlarından dolayı ciddi kayıplar meydana gelebilir. Temel besin maddesi olan yumurtanın kabuk deformasyonuna karşı korunması ve tazeliğinin uzun süre muhafaza edilmesi ülke ekonomisi için büyük önem taşımaktadır. Nakliye ve depolama kaynaklı kayıpların azaltılmasında basit ve pahalı olmayan yeni metotlara ihtiyaç duyulmaktadır. Taze yumurtanın üstün kalitesinin depolama ve nakliye süresince muhafazası ancak yumurtanın birincil ambalajı olan ve depolama ile nakliyede kritik önemi olan yumurta kolisi olarak kullanılan ‘viyol’ kalitesinin arttırılması ile mümkün olabilmektedir.

Taze yumurta ekonomik değerinin yanı sıra, tüm besinler içerisinde sindirilebilirliği yüksek olan, anne sütünden sonra insanın ihtiyacı olan tüm besin öğelerini yapısında bulunduran en kaliteli proteine sahip tek besindir. Yumurtanın içerdiği kaliteli proteinin besleyici değeri de yüksek olup, insan vücudunda sentezlenemeyen ve dışarıdan vücuda alınması gerekli olan "elzem amino asitleri" yeterli ve dengeli miktarlarda içermektedir. Bu açıdan yumurta, yetişkin bir bireyin günlük olarak gereksinim duyduğu esansiyel besin öğelerini içeren fonksiyonel temel bir gıda maddesidir [1-3].

Atık mevzuatındaki en güncel değişiklikler ışığında rotalar belirlenmeli

TOMRA Geri Dönüşüm Başkanı Tom Eng, Avrupa ve uluslararası atık mevzuatındaki son değişikliklerden bazılarına dikkat çekerek, bu değişikliklerin atık işleme operatörleri açısından sonuçlarını değerlendirdi.

Küresel atık ve geri dönüşüm sektörü, sıkı düzenlemelere tabi tutuluyor ve uluslararası mevzuata ek olarak neredeyse her bir ülke, atık işleme operatörlerinin uyması gereken ayrı düzenlemelere sahip bulunuyor. Atık mevzuatı, sektörümüzün bel kemiği ve genellikle mevzuattaki tüm değişikliklere olumlu yaklaşılıyor. Çünkü mevzuatlar, her zaman geri dönüşüm kalite standartlarını daha da artırmayı veya yerel, ulusal ya da uluslararası düzeyde geri dönüşüm oranlarını artırmayı hedefliyor.  

Yürürlüğe giren en yeni üç mevzuat değişikliğini değerlendirmek isteriz: Basel Sözleşmesi Plastik Atık Değişiklikleri, Çin'de katı atık ithalatının yasaklanması ve kısaca Avrupa Yeşil Mutabakatı. 

Kâğıt ve Ambalaj ürünleri pazarında ne gibi değişiklikler olacak?

Kâğıt ve Ambalaj üreticileri önümüzdeki senelerde pazarda ne gibi değişiklikler beklemeli? Trendlerin satış ve müşteri ekosistemine etkilerine nasıl cevap verilmeli?

Son 5 yılda kâğıt ve ambalaj sektörü için en önemli iki trend dikkat çekiyor: Sürdürülebilirlik ve Dijitalleşme. Gerçekleştirdiğimiz projeler ve sektörün önemli oyuncularının katıldığı araştırmalarımızda özellikle bu trendlerin öneminin giderek arttığını ve önümüzdeki 3 yıl içerisinde daha da kuvvetlenerek üreticilerin ürün yönetimi, değer zinciri, satış ve fiyatlandırma süreçlerine direkt olarak etki edeceğini ön görüyoruz. Olağan gidişata ek olarak pandemi (özellikle dijitalleşmede) bu iki trendin yaygınlaşmasında ve hızlanmasında önemi rol oynuyor. Peki şirketler pandemi ile hız kazanan sürdürülebilirlik ve dijitalizasyon trendlerinin etkilerine nasıl adapte olabilirler? Trendler ile değişen satın alma davranışları nasıl fırsata çevrilebilir?

Ürün Yaşam Döngüsü Yönetimi ve Gıda Sektöründe Dijital Dönüşüm

Özet

Gıda ürünleri, bozulabilir nitelikte ürünler olduğundan, insan sağlığını tehlikeye atmayacak şekilde gıda vasfını koruması için üretim anından tüketiciye ulaştığı ana kadar kontrol altında olmak durumundadır. İzlenebilirlik sistemleri aracılığı ile yapılan bu kontrol hem ürünlerin ekonomik anlamda kaybını önlemekte hem de israfın önüne geçilmesini sağlamaktadır. Çünkü artan nüfus, her geçen gün gıda talebini artırdığı gibi, arzın da yetersiz kalması tehlikesini ortaya çıkarmaktadır. Bu bağlamda gıda ürünlerinin ürün yaşam döngüsünün yönetilmesi gereklidir. Bu yönetim ise dijital dönüşüm ile mümkündür. Bu derleme çalışmasında gıda sektöründe dijital dönüşüm konusuna yer verilmiş ve dijital dönüşümün nasıl sağlanacağı tartışılmıştır.

Anahtar Kelimeler: Gıda, gıda sektörü, ürün yaşam döngüsü, izlenebilirlik, dijital dönüşüm 

1. Giriş

İnsanlığın ortak mirası olan tarımsal faaliyet, yüzyıllardır hatta binyıllardır bir önceki neslin keşfettiklerini ve uyguladıklarını bir sonraki nesle aktarması yolu ile yapılagelmiştir. Ancak 20.Yüzyıl ile birlikte dünya nüfusunun neredeyse 7 kat artması nedeniyle gıda ve beslenme problemleri ortaya çıkmıştır. Bu da binyıllardır nesilden nesle aktarılan geleneksel tarım yöntemlerinin yetersiz kalmasına ve terkedilmesine neden olmuş, geleneksel tarımın yerini yüksek verimlilik ve hasat elde edebilmek için her türlü kimyasal ilaçların kullanıldığı modern tarım almıştır. Fakat bu da her ne kadar gıda yetersizliği sorunu ortadan kaldırmışsa da bu kez obezite ve kalp rahatsızlıkları gibi kimyasal ilaçların kullanımına bağlı hastalıklarda artışa neden olmuştur. Bu nedenle modern tarımın da alternatifi düşünülmeye başlamış ve 1980’lerden itibaren organik tarım ve organik gıda üretimine geçilmeye başlanmıştır.  

T-MAX Hammadde Stoklama Siloları

Günümüzde plastik endüstrisinde hammaddelerin az yer kaplayarak daha güvenilir, ekonomik ve daha uygun şartlarda saklanıp korunması hammadde stoklama silo sistemleri ile sağlanmaktadır. 4 metre veya daha yüksek bir alanınız var ve insan boyunun üstünü verimli olarak kullanamıyorsanız hammadde stoklama siloları ile bu alanı en verimli şekilde kullanarak %80’e yakın alan tasarrufu sağlayabilirsiniz. 

Çok çeşitli silo sistemleri olmakla birlikte bu yazıda korozyona karşı dayanıklı, aynı zamanda ekonomik yönden avantajlı mühendislik çözümü olan Sıcak Daldırma Galvaniz (SDG) ve Magnelis®  Kaplama Modüler Silo Sistemleri üzerine duracağız.

Kaplama Yöntemleri

Korozyon doğal bir olaydır ve maalesef tamamen ortadan kaldırılamaz ama bazı yöntemlerle kontrol altına alınabilir. Kaplama yöntemlerinde amaç; çeliğin hava ile olan temasını kesip kimyasal reaksiyona girmesini önleyerek alt katmanda bulunan malzemeyi korozyona karşı korumaktadır. Bu şekilde metallerin oksidasyonunu (paslanmayı) engelleyerek kullanım ömrünü uzatıp aşınmaya karşı direnci arttırmaktır.

Polimer Malzemelerin Isıl İletkenlik Özelikleri

1.Giriş

Polimer kompozitler, hafiflik, kolay işlenebilirlik, dayanıklılık ve düşük maliyet gibi özelliklerinden dolayı birçok uygulama alanında kullanılmaktadırlar. Polimer kompozitlerin özellikleri farklı yöntemler kullanılarak daha çok geliştirilip yeni uygulama alanları kazandırılmaktadır [1,2,3]. Elektrik elektronik uygulamalarında kullanılan malzemelerde ısı birikmesi cihazın performansını olumsuz etkilemektedir [1,4,5]. Bu nedenle, malzemelerde biriken ısının hızlı bir şekilde dağıtılması gerekmektedir [2,3]. Bu problemin giderilmesi için yüksek ısıl iletkenlik özelliğine sahip polimer kompozitleri tercih edilmektedir [2,3]. Polimer malzemelerin ısıl iletkenliği genellikle 0,1–0,5 W/mK arasındadır [6,7]. Polimer malzemelerin, ısıl iletkenlik özellikleri karbon, seramik ve metalik dolgu malzemeleri kullanılarak geliştirilmektedir [1,6,7].  

Gelişen teknoloji ile birçok alanda ihtiyacımızı karşılayan elektronik malzemeler hayatımızın vazgeçilmez bir parçası haline gelmiştir. Isı iletimi elektronik malzemelerin performansı, ömrü ve güvenilirliği için kritik bir öneme sahiptir [8,9]. Isıl iletken kompozit malzemeleri, hafif, iyi kimyasal direnç, mükemmel yalıtım performansı ve ekonomik üretim özellikleri sayesinde ısı dağılımı uygulamalarında daha önemli hale gelmektedir [10]. Bununla birlikte üç boyutlu çip bellekleri, esnek elektronikler ve ışık yayan diyotlar gibi yeni uygulamaların ortaya çıkmasıyla ısı yayılımı bir problem olarak karşımıza çıkmaktadır. Bu problemin giderilmesi için yüksek ısıl iletkenliğe sahip kompozit malzemelere olan ihtiyaç giderek artmaktadır [8,9].

Covid-19 pandemi sürecinin kişisel koruyucu ekipman ve ambalaj atık yönetimine etkileri

Özet

Covid-19’a bağlı olarak ekonomik faaliyetlerin azalmasının dünyanın farklı şehirlerindeki hava kalitesini önemli ölçüde iyileştirdiği, sera gazı emisyonunu, su kirliliğini ve gürültüyü azalttığı birçok çalışmada rapor edilmektedir. Bununla birlikte pandemi sürecinin; tıbbi atıkların artması, dezenfektanların, maskelerin ve eldivenlerin insanlar tarafından gelişigüzel kullanımı ve kullanım sonrasında çevreye atılması gibi bazı olumsuz sonuçları da bulunmaktadır. Bu olumsuz durumlar atık yönetiminde önemli zorluklar ortaya çıkarmış ve devlet otoritelerini salgının atık yönetim sistemleri üzerindeki potansiyel etkilerini azaltmaya yönelik yeni uygulamalar arayışına yöneltmiştir. Bu derlemede Covid-19 pandemi sürecinde ortaya çıkan plastik atıkların nedenleri, atık yönetimi uygulamaları ve atıkların çevresel etkileri irdelenmeye çalışılmıştır. 

Anahtar kelimeler: Covid-19, pandemi, plastik, ambalaj, atık yönetimi

Pazarlamada ürün yaşam döngüsü kavramları

Giriş

Küresel rekabetin her geçen gün arttığı, arz-talep dengelerinin sürekli olarak yenilendiği günümüzde pazarlara yeni ürün sunmak gerekmektedir.  Yenilik kavramı günümüz üretimleri için sürdürülebilir rekabet üstünlüğünün en önemli dinamiği ve ekonomik yapıları için de itici gücü haline gelmiştir. Yeniliği bu kadar önemli noktaya taşıyan nedenler arasında ürünlerin yaşam eğrilerinin doğru planlaması ve geliştirilen stratejilerin çevresel faktörlere bağlı olarak hızlı değişkenlik göstermesidir.

Her sektördeki ürün gamının artması, müşteriye sunulan seçeneklerin çoğalması işletmelere her dönemde gelişime açık olmaları gerekliliğini hatırlatmaktadır. Her geçen yıl taleplerin farklılıkları daha da artmakta, bu taleplere gelecek çözümlerin hızlanması beklenmektedir. Tüketim toplumunun en büyük göstergesi olan hız kavramı, ürünlerin yaşam döngülerinin kısalmasına neden olmaktadır.

Her bir yenilik, bir başka kavramın kapılarını açarken, süregelen birçok üretimi derinden etkilemektedir. Bu hızlı dengede her geçen gün yeni ürünler gelişirken, gelişimini tamamlamış birçok ürününden portföylerinden çıkarılması gerekmektedir. Pazarlama çalışmalarının hızlık kazandığı günümüzde, ürün yaşam eğrisinin dikkatli planlanarak yönetilmesi çok önemlidir.

Gıda Ambalajlamada Nanoteknoloji

Özet

Nanoteknoloji yüzyılın en önemli gelişmelerinden bir tanesidir. Gıda endüstrisinde de nanoteknolojiden yararlanılmakta olup, ambalajların matriksine eklenen nanopartiküller aracılığıyla bariyer, mekanik ve termal özelliklerinin geliştirilmesi sağlanmaktadır. Bununla birlikte polimerlere eklenen aktif nanomateryaller, etilen ve oksijen tutuculuk yanında, antimikrobiyal özellik kazandırma gibi fonksiyonlarıyla gıdaların raf ömrünün artırılması amacıyla da kullanılmaktadır. Fakat tüm bu olumlu yönlerinin yanında, güvenlik ve sağlık konusunda endişeler de bulunmaktadır. Bu nedenle bu derlemede, gıda ambalajlama uygulamalarında kullanılan nanopartiküller ve nanoteknoloji konusunda yaşanan endişeler hakkında bilgi verilmektedir.

1.Giriş

Küreselleşme, sosyal-kültürel değişimler ve mikrobiyal kontaminasyon sonucu bozulmuş gıdaların tüketimi nedeniyle gıda kaynaklı hastalıkların artması; tüketicilerin kimyasal ve mikrobiyolojik açıdan güvenli gıdaya olan taleplerinin artmasına neden olmaktadır [1]. Bu nedenle, gıdanın üretimden son kullanıcıya ulaşıncaya kadar olan süreçte iyi biçimde korunması; uygun ambalaj malzemelerinin kullanılmasını gerektirmektedir [2]. Genel olarak ambalajlama materyalleri; ürün çeşidine ve istenen raf ömrüne bağlı olarak ambalajın mekaniksel, termal ve bariyer özellikleri göz önüne alınarak seçildiğinden, birçok kuruluş ve araştırmacı gıda ambalajlamada nanoteknolojiyi kullanarak ambalaj materyallerinin geçirgenlik özelliklerini değiştirmeyi, gıdaların raf ömrünü arttırmayı ve gıda güvenliğini sağlamayı amaçlamaktadır [3].

Plastik Üretim Yönteminde Gaz Destekli Enjeksiyon Teknolojisi (GIT)

Özet:

Enjeksiyon kalıplama, polimer ürünlerinin işlenmesi için kullanılan en yaygın teknolojilerden biridir. Farklı tiplerdeki reçinelerin işlenmesi için enjeksiyonla kalıplama kullanılmasına rağmen, enjeksiyonla kalıplanmış polimerlerin çoğu termoplastiklerdir. Son yıllarda, termoplastik parça üretiminde; malzemeden kazanç sağlanması, parça kalitesinin iyileştirilmesi, çevrim süresinin azaltılması, tasarımda serbestlik ve malzeme birleşme çizgilerinin azaltılmasına olanak sağlayan akışkan destekli üretim yöntemleri, yenilikçi teknolojiler olarak değerlendirilmektedir. Akışkan destekli üretim teknolojisinin temeli olan Gaz Destekli Enjeksiyon Teknolojisinde (GIT), henüz katılaşmamış olan plastik parçaya basınçlı   (Azot) ve/veya C  gazı gönderilerek parça içinde kontrollü boşluk oluşması sağlanır. Bu teknoloji ile daha düşük enjeksiyon basınçları, daha düşük malzeme kullanımı, daha az çekme ve çöküntü izleri ve daha yüksek yüzey kalitesinde parça üretimi gerçekleştirilebilmektedir. Dolayısıyla maliyeti yaklaşık %25 azaltmaktadır. Gaz enjeksiyonla imalat parça tasarımı olarak da oldukça fazla esneklikler sağlar. Bununla birlikte gerektirdiği ekipman ve bazı ilave masraflar bu yöntemin dezavantajlarındandır.

Anahtar Kelimeler: Gaz destekli enjeksiyon teknolojisi, Termoplastik

Endüstriyel Uygulamalarda ERP & PLM Entegrasyonu

PLM (Product Life Cycle Management) yani ürün yaşam döngüsü yönetimi ile ERP (Enterprise Resource Planning) kurumsal kaynak planlaması her ne kadar bir arada anılsa da aralarında farklar bulunmaktadır. PLM’siz ERP, ERP’siz PLM düşünülemez. Birbirlerini tamamlayıcı özelliklere sahip olan PLM ve ERP yazılımları ikilisi, beraber entegre bir halde çalıştıkları zaman enformasyonun önemli olduğu kurumlarda şirketlerin haberleşme becerilerini sağlıklı kılmaktadır. Bu sayede firmaların performansları ve verimlilikleri de bir üst düzeye kolaylıkla çıkmaktadır.

1.1 Bu iki yazılımın arasındaki farklar nelerdir?

•ERP maddi varlıklarla alakalıyken, PLM entelektüel sermaye ile alakalıdır.

•ERP’nin odak noktası kontrol ve planlamadır, PLM inovasyonla ilgilenir.

•ERP’de mühim olan müşterinin siparişinin hazırlanmasındaki süreçtir, PLM ürünün yaratılması konusunda destek verir.

•ERP’nin çalışma biçimi kontrollüyken, PLM esnektir.

•ERP talep ve sipariş mantığıyla çalışır, PLM müşterinin ihtiyaçlarını analiz eder.

•ERP’de verilerin birbirleri ile olan ilişkisi daha statiktir. PLM’de ise ağ verileri arasındaki uyum dinamik olarak nitelendirilebilir.

• PLM yazılımı, esnek bir veri yapısına sahiptir. PLM’de görsel bilgi ve gösterge tablolarının gereksinimlerinin yanı sıra, ürünlerin dijital ortamda üretilmesi ve üzerinde değişiklik yapılabilmesi şansı vardır. ERP yazılımında ise tekrar eden işlemlerin, yürütme odaklı, kontrollü ve iyi tanımlanmış iş süreçleriyle bağı sağlanmaktadır.

Gıda Ambalajlarında Sürdürülebilirlik

Özet 

Nüfusun artmasıyla, insanların günlük ihtiyaçlarını karşılamak için kullandığı hizmetler çevreye zararlı hale gelmeye başlamıştır. Bu sınırlı kaynakların aşırı kullanımı, gelecek açısından tehlike oluşturmaktadır. Ürünlerin doğru tüketimi ve yaşam tarzlarının değiştirilmesi için tüketicinin bilinçlenmesi önem taşımaktadır. Bu süreçte, ambalaj tasarımı ve paketler hakkında tüketicilerin sürdürülebilir tüketim davranışına yönlendirilmesi önemli rol oynamaktadır. Bu çalışmada, sürdürülebilirlik kavramı ve gıda ambalajlamada kullanımına yönelik uygulamalar derlenmiştir.

1.Giriş

Canlı varlığının sürdürülebilmesi için buna uygun çevrenin ve doğal kaynakların iyi durumda olması gerekmektedir. Sürdürülebilirlik kavramının hayatımıza girmesiyle çevresel sorunlara çözüm bulunması ve yaşamın korunması amaçlanmaktadır. Sürdürülebilirlik ekonomi, tasarım, mimari, mühendislik vb. birçok alanda uygulanabilmektedir ve uygulandığı her alanda çevreyi korumaya yöneliktir (Özsoy, 2020).

Atık maddelerin değerlendirilmesi

Özet

İnsan nüfusunun giderek artması, dünyada bulunan kaynakların tükenmeye başlaması, çevre kirliliklerinin artması endüstri sahiplerini ve girişimcileri maliyeti azaltan hammadde, yan ürün, enerji kaynağı kullanımı gibi fikirlere yöneltmiştir. Bu amaçların gerçekleştirilebilmesi için atıkların geri kazanılması ve sürdürülebilir yeni kaynakların kullanımı konularına yönelik araştırmalar yoğunlaşmış ve bazı çalışma sonuçlarından umut verici gelişmeler elde edilmiştir. Bu makalede atık maddelerin değerlendirilmesi ile ilgili son yıllarda yapılan dikkat çekici çalışmalar derlenmiştir.

Anahtar Kelimeler: Atık, Sürdürülebilir, Ekonomik, Endüstri, Teknolojik

Ambalaj Materyallerinde Meydana Gelen Son Gelişmeler

Özet

Ambalajlama; gıdaların raf ömrünün uzatılması, kullanımı kolaylaştırması ve depolama ya da taşınım sırasında fizikokimyasal hasarlara karşı koruma gibi yararlarından dolayı gıda endüstrisinde kritik bir role sahiptir. Ayrıca bakteri, virüs ve fungilerin sebep olduğu birçok gıda kaynaklı hastalık ve kontamine gıda ürünlerinden hastalık geçme riski, gıdaların paketlenmesi işleminin önem kazanmasını sağlamıştır. Ancak petrol bazlı paketleme malzemelerinin kullanılması tüketicileri tedirgin ettiği için üreticileri yeni tip ambalaj üretimine itmektedir. Bu çalışmada ambalaj materyallerinde ortaya çıkan son gelişmelerle ilgili yapılan araştırmalar üzerine bir inceleme yapılmıştır.

Anahtar Kelimeler: Ambalaj, nanoteknoloji, yenilebilir, antimikrobiyal, taşıyıcı

Reklam Alanı

Reklam Alanı

Reklam Alanı

Reklam Alanı